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The goodness-of-fit test is very old. It was presented by Karl Pearson in 1900. One
of the principal goals of a statistician is to associate a probability distribution with a
histogram of experimental data. Probability distributions lie in the imaginary world of
abstract things like events and sample spaces whereas histograms are constructed from
actual measurements. The goodness-of-fit test provides an analytical test for determining
if a specified distribution may be ascribed to a population. A X2 quantile will serve the
purpose of a measuring stick to judge the fit between the histogram and the probability
distribution.

Suppose two dice are tossed twenty times and define a random variable, X, which gives
the sum of the faces of the two dice. The observed sum of the faces for each toss is listed
here:

2 7 4 9 6 3 8 3 12 4 4 5 7 10 8 3 11 12 4 9

The histogram of the data appears on the left in Figure 1. If the two dice are actually fair,
then the distribution of X would assume the Triangle distribution like the one shown on the
right in Figure 1. The histogram bears some resemblance to the Triangle distribution, but

1



2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7 8 9 10 11 12

.

.

* **
*

*
*
*

* * *
* *

*
*
* * *

*
*

*
*
*
*

*

*
*
*

*
*

*
*

*
*
*

*
*
*

*

*
*
*

*
*

*
*
*
*

*

*
*
*
*
*
*

* *

Figure 1

the claim that the histogram and the probability distribution form a good fit is questionable
simply based on inspection. Suppose that the dice are indeed fair, then the expected
number of 2’s which would appear from rolling two dice twenty times will be np = 20 1

36
,

and the expected number of 3’s will be np = 20 2
36
, and so on. These expectations are

listed in Table 1 in which the observed frequency for each value of X appears on the top
line, the expected frequency if the dice were fair, appears in the middle row. The bottom
row contains the deviations. If the deviations are small, then for practical purposes, the
probability distribution agrees with the histogram.

Table 1

Sum of Faces 2 3 4 5 6 7 8 9

Observed 1 3 4 1 1 2 2 2

Expected 20( 1
36 ) 20( 2

36 ) 20( 3
36 ) 20( 4

36 ) 20( 5
36 ) 20( 6

36 ) 20( 5
36 ) 20( 4

36 )

Deviation .444 1.889 2.333 -1.222 -1.777 -1.333 -.778 -.222

Sum of Faces 10 11 12

Observed 1 1 2

Expected 20( 3
36 ) 20( 2

36 ) 20( 1
36 )

Deviation -.667 -.111 1.444

Not surprisingly, the sum of the deviations is equal to zero. In order to eliminate
the effect of negative deviations, they are squared and rather unexpectedly, each squared
deviation is divided by the expected value.

Definition 1. X2 =
n∑

i=1

(observedi−expectedi)2

expectedi
is called the chi-squared test statistic.
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Example 1. Find the chi-squared test statistic for the previous example of throwing

two dice twenty times.

X2 = .4442
20

36

+ 1.8892
40

36

+ 2.3332
60

36

+ (−1.222)2

80

36

+ (−1.777)2

100

36

+ (−1.333)2

120

36

+ (−.778)2

100

36

+ (−.222)2

80

36

+ (−.667)2

60

36

+

(−.111)2

40

36

+ 1.4442
20

36

= 13.44524

The X2 test statistic gives an indication of the discrepancy in the fit between the
histogram and the probability distribution. By comparing it to the X2 quantile, the size of
the discrepancy will either be too big to support the claim that the probability distribution
adequately fits the data or small enough to say that the fit is not bad. If theX2 test statistic
is too big, then the null hypothesis that the histogram and the probability distribution
agree must be rejected. The criterion for rejection is given in the following table.

H0 Test Statistic H1 Reject when

Population has
specified distribu-
tion

X2 =
n∑

i=1

(observedi−expectedi)
2

expectedi

Population does
not have specified
distribution

X2 > X2
n−1,α

A tabulation of X2 quantiles is given in Appendix 1.

Example 2. Test the hypothesis that the empirical distribution shown by the histogram

of the frequency of throwing two dice twenty times is the same as the theoretical distribution

at a level of significance of α = .05
X2

11−1,.05 = 18.30
Does X2 = 13.445 > 18.307? No, cannot reject the null hypothesis that the observed

histogram follows the Triangle distribution.

As imperfect as the shape of the histogram appears in relation to the Triangle distri-
bution, the conclusion of the goodness-of-fit test substantiates the claim that the Triangle
distribution may be used to account for the experimental outcomes of the actual tossing of
two dice. The implication is that the characteristics of the population which are manifested
in the experimental results from tossing of two dice not only twenty times but any number
of times may be adequately explained by the Triangle distribution. Furthermore, having
successfully made the association between the population which produced the histogram
and the sample space consisting of two imaginary fair dice, we may say that the real dice,
too, are probably fair. Although we should not say that the goodness-of-fit test proves
that the two dice are fair, yet the conclusion of not rejecting the null hypothesis indicates
that the dice are probably fair and that the Triangle distribution may adequately describe
the population until additional evidence demonstrates otherwise.
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1 Contingency Table

The X2 test can be extended from one to two dimensions, for example:

Problem 1. A random sample of 200 married men, all of whom are retired, were

classified according to education and to the number of children whom they sired.

Number of Children

Education 0-1 2-3 over 3 Row Totals

Elementary 14 (18.675) 37 (39.84) 32 (24.495) 83

Secondary 19 (17.55) 42 (37.44) 17 (23.01) 78

College 12 (8.779) 17 (18.72) 10 (11.505) 39

Column Totals 45 96 59 200

Definition 2. This table is called a contingency table. An element of it is called a

cell.

The numbers written within parentheses are the expected number of occurrences if
education and number of children are independent.

Question 1. Are education and number of children independent events?

Let A be the event of siring 0-1 children. Let B be the event of only getting an el-
ementary school education. If A and B are independent, then P (A ∩ B) = P (A)P (B)
where P (A) = 45

200
and P (B) = 83

200
. In the case of independence, what would be the

expected number of men who sired 0-1 children but got an elementary school education?
np = 200P (A ∩ B) = 200P (A)P (B) = 200 45

200
83
200

= 45×83
200

= 18.675. This same number
appears in the contingency table within parentheses.

What is the expected number of men who got an elementary education and sired 2-
3 children? Let C be the event of siring 2-3 children. Let B be the event of getting an
elementary school education. If C and B are independent, then np = 200P (C ∩ B) =
200P (C)P (B) = 200 96

200
83
200

= 39.84.
It does not take long to see a pattern emerge from calculating the expected frequencies.

We will use the pattern to shorten the computations as is done in our final example. The
expected number in the cell for siring 3 or more children with a college education is
59×39
200

= 11.505.
The criterion for rejecting the null hypothesis of a contingency table is given below.
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H0 Test Statistic H1 reject when

Rows and columns X
2 =

n∑

i=1

(observedi−expectedi)
2

expectedi

Not independent X
2
> X

2
ν,α

are Independent where ν = (r − 1)(c− 1)

r=number of rows

c=number of columns

Example 3. In our example, r=3 and c=3; therefore, ν = (3− 1)(3− 1) = 4. Suppose
that α = .05. The appropriate X2 quantile for conducting a goodness-of-fit test is: X2

4,.05 =
9.48.

X2 =
9∑

i=1

(observedi−expectedi)
2

expectedi
= (14−18.675)2

18.675
+ (37−39.84)2

39.84
+ . . .+ (10−11.505)2

11.505
= 7.4626.

Is X2 = 7.4626 > 9.48? No. Therefore, we cannot reject the null hypothesis. Hence,

based on the data, a man’s education and the number of children whom he sires appear to

be independent at a level of significance of α = .05.

The choice of α has thus far been arbitrary. For sufficiently large α’s, the null hypothesis
can be rejected. For sufficiently small α’s, the null hypothesis cannot be rejected. That α
which lies exactly at the boundary of admitting a rejection or no rejection is called the p

value of the test. It is often published with the results of an analysis for the benefit of the
reader. The p value for the above test is p = P (X2

4 > 7.4626) = .113. We used α = .05
in conducting the test but since α < p, the null hypothesis could not have been rejected.
Only when α exceeds .113 will the null hypothesis be rejected.

Example 4. An experiment was conducted to investigate the effect of a vaccination

on laboratory animals. Some animals when exposed to the disease contracted it, and some

did not according to whether the animal was inoculated. The developer hopes that the

vaccine and the contraction of the disease are not independent. To prove his belief, the

null hypothesis was formulated to assume the worst case in that the vaccination and the

likelihood of getting a disease are independent in the hope that it will be rejected at a level

of significance of .05. A tabulation of the results appears below.

Got the Disease Did not get the Disease

Vaccinated 9 (13.84) 42 (37.19) 51
Not Vaccinated 17 (12.19) 28 (32.81) 45

Column Totals 26 70 96
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1. α = .05; ν = (r − 1)(c− 1) = 1.

2. The expected number of cases assuming independence is given in parentheses.

3. X2 =
4∑

i=1

(observedi−expectedi)
2

expectedi
= (9−13.84)2

13.84
+ (42−37.19)2

37.19
+ (17−12.19)2

12.19
+ (28−32.81)2

32.81
= 4.918.

4. X2
1,.05 = 3.48146.

5. Is X2 = 4.918 > 3.48? Yes. Reject the null hypothesis that the vaccination and

contracting the disease are independent. In conclusion, based on the data, it appears

that the vaccination prevents the contraction of the disease.

The p value of the test is that α at which the null hypothesis can and cannot be rejected.
It is p = .0266 = P (X2

1 ≥ 4.918). For an α > p, the null hypothesis will be rejected; for an
α < p, the null hypothesis cannot be rejected. In other words, suppose α is chosen slightly
larger than p, like α = .0267, then X2

1,.0267 = 4.910 and because 4.918 > 4.910, the null
hypothesis is rejected. Suppose, on the other hand, α is chosen slightly smaller that p, like
α = .0265, then X2

1,.0265 = 4.923 and because 4.918 6 >4.923, the null hypothesis cannot be
rejected. The use of the p-value offers a reader a way to judge the proximity of the test
statistic to the boundary of the rejection region which the p value marks.
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Quantiles for a X2 Distribution
ν X

2

ν,.20 X
2

ν,.15 X
2

ν,.10 X
2

ν,.05 X
2

ν,.025 X
2

ν,.01 X
2

ν,005

1 1.64237 2.07225 2.70554 3.84146 5.02389 6.63490 7.87944

2 3.21888 3.79424 4.60517 5.99146 7.37776 9.21034 10.59663

3 4.64163 5.31705 6.25139 7.81473 9.34840 11.34487 12.83816

4 5.98862 6.74488 7.77944 9.48773 11.14329 13.27670 14.86026

5 7.28928 8.11520 9.23636 11.07050 12.83250 15.08627 16.74960

6 8.55806 9.44610 10.64464 12.59159 14.44938 16.81189 18.54758

7 9.80325 10.74790 12.01704 14.06714 16.01276 18.47531 20.27774

8 11.03009 12.02707 13.36157 15.50731 17.53455 20.09024 21.95495

9 12.24215 13.28804 14.68366 16.91898 19.02277 21.66599 23.58935

10 13.44196 14.53394 15.98718 18.30704 20.48318 23.20925 25.18818

11 14.63142 15.76710 17.27501 19.67514 21.92005 24.72497 26.75685

12 15.81199 16.98931 18.54935 21.02607 23.33666 26.21697 28.29952

13 16.98480 18.20198 19.81193 22.36203 24.73560 27.68825 29.81947

14 18.15077 19.40624 21.06414 23.68479 26.11895 29.14124 31.31935

15 19.31066 20.60301 22.30713 24.99579 27.48839 30.57791 32.80132

16 20.46508 21.79306 23.54183 26.29623 28.84535 31.99993 34.26719

17 21.61456 22.97703 24.76904 27.58711 30.19101 33.40866 35.71847

18 22.75955 24.15547 25.98942 28.86930 31.52638 34.80531 37.15645

19 23.90042 25.32885 27.20357 30.14353 32.85233 36.19087 38.58226

20 25.03751 26.49758 28.41198 31.41043 34.16961 37.56623 39.99685

21 26.17110 27.66201 29.61509 32.67057 35.47888 38.93217 41.40106

22 27.30145 28.82245 30.81328 33.92444 36.78071 40.28936 42.79565

23 28.42879 29.97919 32.00690 35.17246 38.07563 41.63840 44.18128

24 29.55332 31.13246 33.19624 36.41503 39.36408 42.97982 45.55851

25 30.67520 32.28249 34.38159 37.65248 40.64647 44.31410 46.92789

26 31.79461 33.42947 35.56317 38.88514 41.92317 45.64168 48.28988

27 32.91169 34.57358 36.74122 40.11327 43.19451 46.96294 49.64492

28 34.02657 35.71499 37.91592 41.33714 44.46079 48.27824 50.99338

29 35.13936 36.85383 39.08747 42.55697 45.72229 49.58788 52.33562

30 36.25019 37.99025 40.25602 43.77297 46.97924 50.89218 53.67196

40 47.26854 49.24385 51.80506 55.75848 59.34171 63.69074 66.76596

50 58.16380 60.34599 63.16712 67.50481 71.42020 76.15389 79.48998

60 68.97207 71.34110 74.39701 79.08194 83.29767 88.37942 91.9517

70 79.71465 82.25535 85.52704 90.53123 95.02318 100.42518 104.2149

80 90.40535 93.10575 96.57820 101.87947 106.62857 112.32879 116.32106

90 101.05372 103.90406 107.56501 113.14527 118.13589 124.11632 128.29894

100 111.66671 114.65882 118.49800 124.34211 129.56120 135.80672 140.16949

150 164.34919 167.96177 172.58121 179.58063 185.80045 193.20769 198.36021

200 216.60878 220.74413 226.02105 233.99427 241.05790 249.44512 255.26416
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