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If an association of a histogram with a probability distribution is convincingly made,
then, in essence, the statistical problem of characterizing the population has been solved.
But how can we tell analytically if the association is a valid one? The answer to that
question tends to be controversial to say the least as each antagonist strives to make an
association which will improve the advantage of his position over his opponent’s position
especially when a decision must be won in a political arena. The arena need not be a
legislative forum or a court of law; it could be and undoubtedly will be the company
conference room.

To set the stage for developing the process of testing whether a hypothesis should or
should not be rejected, a simple experiment will illustrate that the origins of indecisiveness
is a function of the probability of not wanting to commit the wrong decision. The less
chance that is prescribed in allowing a commission of error, the less likely that a decision
will be made. The level of chance that one is willing to take depends on the stakes at
risk. There is no theoretical way to find the right balance between risks and benefits; the
manager ultimately must make that decision.

Law 1 (Dow’s Law). In a hierarchical organization, the higher the level, the greater
the confusion.

Toss a coin 100 times and designate: Xi =

{

1 if a head appears
0 otherwise

. The total number

of heads that appear out of 100 tosses is determined by counting the number of 1’s that
appear in the data. Equivalently, the sum of the Xi’s is the number of heads because
the tails are represented by Xi = 0. Denoting T to be the number of heads that appear

out of 100 tosses implies that T =
100
∑

i=1

Xi. Each Xi is a Bernoulli random variable, hence

T ∼ b(100, p).

Problem 1. Suppose 35 heads were observed after tossing a coin 100 times. Is the coin
a fair coin? Does P (Xi = 1) = 1

2
?
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If the coin were fair, then T ∼ b(100, .5) and that E[T]=np=100(.5)=50 and

var(T ) = npq = 100(.5)(.5) = 25

Instead of 50 heads being observed, only 35 appeared. The probability of the event of
getting at most 35 heads given that the coin is fair is: P (T ≤ 35) = .0017588. This
computation for a Binomial random variable was done on a computer because it would
have been too arduous a task to do the computation by means of a hand calculator. In
the absence of a computer or tables for a Binomial distribution, an approximation of
that probability could have been obtained by using the Normal distribution. The usual
procedure of finding the z-score leads to the statement: P (T−50

√

25
≤ 35−50

√

25
) = P (z ≤ −3) =

.0013499. In either case, the probability of getting at most 35 heads is quite small when
flipping a fair coin 100 times. The small probability suggests the conclusion that the coin
is not fair, otherwise if the coin were in fact fair, the number of observed heads should
have been much closer to the expected value of 50.

The construction of a confidence interval is certainly worth investigating for gaining an
idea of the location of the true value of p. A more simple approach for our purposes will be
to assume that the coin is fair and then find two numbers, a and b, which are symmetrically
placed about 50 such that the probability that T is between them is 95 percent. By
supposition, p=.5 and using the Normal distribution to approximate T, the lower limit,
a=50- σ

√

n
zα

2
. There is only one T so that n=1, zα

2
= z.025 = 1.96, and σ2 = 25 → a = 40.

The upper limit, b=50+ σ
√

n
zα

2
= 60.

It is obvious at α = .05 that 35 6∈ (40, 60). This result and the previous one are two
indications to substantiate the claim that the coin is not fair. One would be inclined to
decide that the hypothesis that the coin is fair should be rejected in favor of the alternative
hypothesis that it is not a fair coin.

The discussion thus far elicits the puzzling question concerning the feasibility of deter-
mining a definitive answer to a statistical hypothesis.

Law 2 (Walpole & Myers). The truth or falsity of a statistical hypothesis is never
known with certainty, unless we examine the entire population.

Because a feasible experiment will admit an examination of only a part of the entire
population, a statistical conclusion can only be made at a certain level of confidence that
it is correct. Our decision can only be based on a sample of a population, and, as a result,
the validity of our decision will have some uncertainty in it. In a simple decision, we must
either accept or reject a hypothesis. To reject a hypothesis means that based on the data,
the hypothesis is false, while to accept the hypothesis means that there is insufficient data
to believe otherwise. To accept a hypothesis does not mean that the hypothesis is true.
Because of this terminology, we should always state the hypothesis which we hope to reject.
The formulation of the hypothesis depends on the context of the problem.
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Example 1. Suppose that you found a coin on the sidewalk. You identified it to be
not a U.S. coin, but an ancient Scythian coin; you also know that one variety of that
coin is extremely valuable. You know that such a coin is loaded so that p=.35 of getting
heads, while the counterfeit variety is fair, p=.5 and is worthless. You are hoping that
you have indeed the rare coin. The only expert in the U.S. who can appraise the coin lives
in Boise, Idaho. It is now early January. You prefer not to travel to Boise, Idaho on a
wild goose chase. An experiment of flipping the coin many times comes to your mind for
demonstrating the falsity of the hypothesis that the coin is counterfeit. That is, you hope
to reject, based on the experimental data, the hypothesis that p=.5 with the probability, α,
that your decision is wrong.

A translation of the problem into mathematical terminology would be the following:

H0 : p = .5 vs. H1 : p = .35 at a level of significance α = .05

H0 denotes the null hypothesis, and H1 denotes the alternative hypothesis.
In an experiment, the examination of the population is imperfect. The decision to reject

the null hypothesis, based on experimental data might lead to a wrong decision. There are
two possible outcomes to every decision as depicted in the following diagram.

Reject H

H

Decision

Cannot Reject

Probability that the decision to reject

the null hypthesis is wrong is
denoted by 

Probability that the decision to accept 

the null hypothesis is wrong is 
denoted by  

o

o

P(false negative)

P(false positive)

and is called Type I error α

 β and is called Type II error

Philosophically, it is better to say cannot reject than to say accept in the same sense
that the innocence of an accused criminal is rejected to prove guilt. However, if due to
insufficient evidence, the accused is not convicted, then the verdict does not mean that the
innocence of the accused has been proven, since he may, in fact, be not innocent. We can
only say that there is insufficient evidence to reject his innocence. The null hypothesis could
very well be false, but the set of data might not be sufficient to reject the null hypothesis.
Even if the null hypothesis cannot be rejected, we dare not accept the hypothesis as being
true.

Example 2. Suppose while walking home, a mysterious man wearing a trench coat
whispered to you from out of a dark doorway as if not to be overheard by any one else but
you. Suppose he advised you to sell all of your stock in Microsoft because next week it will
declare bankruptcy. Then suddenly this mysterious man darted down a dark alley before
you had a chance to respond. Of course, you would disbelieve him, because the government
will never allow Microsoft to go out of business since too much of the tax base depends
on it. Still you might be somewhat concerned. Should you sell or not sell your stock?
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You must make a decision. It can be framed as a statistical hypothesis: Microsoft will go
bust next week, hence sell all stock. Shall you reject or not reject the hypothesis against
the alternative hypothesis that Microsoft will continue to thrive. Which decision will be the
worst one to make? If you reject the null hypothesis and keep your investment in Microsoft
but next week you learned to your dismay that Microsoft indeed declared bankruptcy, then
your investment is now worthless. You committed an error. Let us assume that you did sell
your stock in Microsoft in accordance with the advice of that man whose character reminded
you of Humphrey Bogart but next week you learned that Microsoft is as financially sound
as ever. You have also committed an error. Which error is the worst error? The first one
is the worst error because you lost your entire fortune whereas in the latter case you can
still reinvest the capital given to you from the sale of the stock to buy it back again though
at the cost of paying the commission. The first kind of error is the worst of the two. It is
the Type-I Error; the second error is the Type-II Error.

Jerzy Neyman
1894-1981

The terminology which appears in the subject of testing hypotheses was coined by Jerzy
Neyman who with Egon Pearson laid the foundations for the testing of hypotheses.

The probability that the decision to reject the null hypothesis is wrong is denoted by
α; it is the same α that is used in calculating confidence intervals. The probability that the
decision not to reject the null hypothesis is wrong is denoted by β. Not wanting to make
the wrong decision dictates the desire for sufficient information. The more information
that is made available for analysis the less likely that a wrong decision will be made. The
discipline in statistics which is dedicated to this topic is called decision theory.

Suppose that a statistician presented a rule whereby if 40 or less heads are observed
out of 100 tosses, then the decision to reject the null hypothesis that p=.5 against the
alternative that p=.35 may be made. This rule is called a decision rule; the value, 40, is
called the critical value. Decision rules are routinely employed in quality control in such

4



matters as deciding whether to reject a lot of manufactured items or to approve it for
shipment to a customer. The decision rule in that context is applied to a random sample.
If more than 40 items are defective or non-conforming in the parlance of a legalist, then
the lot is rejected and perhaps the assembly line will have to be shutdown until the cause
of producing the defects is eliminated.

α denotes the probability of committing a type-I error;

α = P (decision to reject H0 is wrong)

= P (T < 40|p = .5) = P (T ≤ 39|p = .5)

=
39
∑

k=0

P (X = k|p = .5) =
39
∑

k=0

(

n

k

)

.5k(1− .5)n−k

= .0176001.

By following the decision rule, the hypothesis is rejected or not rejected depending on
whether we observe less than 40 heads or more than 40 heads. If the decision of rejecting
the null hypothesis is made, then that decision will be wrong with a probability of .0176.

On the other hand, the alternative hypothesis is: H1 : p = .35. If by following the
decision rule, H0 is not rejected but in reality that decision is the wrong one to have
been made, then the decision maker committed a type-II error because in fact p=.35. The
probability of this event occurring is denoted by β. β = P (T ≥ 40|p = .35) = 1 − P (T ≤
39|p = .35) = 1− .827585 = .172415. In the event that from following the decision rule, the
null hypothesis is not rejected because more than 40 heads are observed, then the decision
will be the wrong decision with probability β=.172.

From the preceding discussion, it should be clear that a decision rule depends on
three things: the formulation of the hypothesis which includes the chosen parameter of a
probability distribution like p for a Binomial distribution; the sampling size, n; and the
critical value, C. It is informative to see how α and β change as either one of those three
entities is varied. Keeping p and n fixed, Table 1 shows how α and β change as the critical
value, C, varies.

The decision is based on the criterion that if the number of observed heads is less than
C, then reject H0 : p = .5 in favor of H1 : p = .35, but if the number of observed heads
is greater than C, then do not reject H0. C is the critical value for making the decision.
As the critical value changes, the probabilities of making the wrong decisions change. The
probabilities α and β are in an inverse relationship with one another as a function of the
critical value, C, and that leads to a problem of choosing an appropriate critical value.
Choosing the right C is a decision of the manager who after weighing the the risks and
benefits of a decision will stipulate values for α and β while recognizing that committing
a type-I error is worse than committing a type-II error.

Given the same problem, but maintaining a constant ratio, C
n
= .4, of the critical value,

C, to the sampling size, n, the following table shows how the values of α and β change as
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Table 1: Relationship of Type-I, Type-II, and Power of a Test

Critical Value P (T < C|p = .5) P (T ≥ C|p = .35) Power of Test
C α β 1− β

35 .000895 .537563 .462431
36 .001758 .454164 .545836
37 .003318 .373075 .626946
38 .006016 .297551 .702449
39 .010400 .230192 .769870
40 .017600 .172415 .827585
41 .028144 .125022 .874977
42 .044313 .087678 .912321
43 .066605 .059430 .940569
...

...
...

...
48 .308649 .005019 .994998
49 .382176 .002748 .997252
50 .460205 .001450 .998549

the sampling size increases.

Table 2: Affect of Sampling Size on α, β, and Power of a Test

C
n

C n α β 1− β

.4 20 50 .059460 .273563 .726436

.4 40 100 .017600 .172415 .827585

.4 80 200 .001817 .080469 .919530

.4 400 1000 9.08× 10−11 .0005713 .9994287

The relationship of α and β according to the size of the sample agrees with our intuition
that as more observations are made, the less likely a decision will be wrong. On the other
hand, a large sample costs more money than small samples, consequently, the formulation
of a decision rule must balance the sampling size and the critical value in such a way as to
make α and β come as close to the stipulated values as promulgated by the management
but with the least cost. The methodology which underpins this endeavor constitutes the
design of experiments, an important branch of statistics upon which a practitioner of
statistics constantly depends.

Upon completion of a well designed and successfully conducted experiment, the moment
of anxious anticipation for substantiating the objective of the experiment arrives at the
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commencement of analyzing the data. From the analysis of the data, a parameter of
the prospective probability distribution which is being proposed to describe a facet of
the population is estimated and, based on that estimation, the decision whether or not to
reject the claim that the estimate is the right one must be made. To appease the skepticism
of an antagonist, the results of the analysis must be convincing; the claim must be tested
against the facts. The analytical process of substantiating a claim is known as a test of
hypothesis. There are many formulations of a hypothesis; we will be concerned with three
of them.

Definition 1. Let Θ be a parameter of a probability distribution.

One-sided or One-tail Test Two-sided or Two-tailed Test

H0 : Θ = Θ0 vs H1 : Θ > Θ0 H0 : Θ = Θ0 vs H1 : Θ 6= Θ0

H0 : Θ = Θ0 vs H1 : Θ < Θ0

1 Testing a Hypothesis between a Mean and a Con-

stant

When Xi are i.i.d. N(µ, σ2), the following table gives the test statistic and the criteria for
rejecting the null hypothesis.

H0 Test Statistic H1 Reject When

µ < µ0 Z < −zα
When σ2 is known µ = µ0 Z = x̄−µ0

σ
√

n

µ > µ0 Z > zα

µ 6= µ0 Z < −zα

2
or Z > zα

2

µ < µ0 T < −tn−1,α

When σ2 is unknown µ = µ0 T = x̄−µ0
s

√

n

µ > µ0 T > tn−1,α

µ 6= µ0 T < −tn−1,α
2
or T > tn−1,α

2

Like the recipe for constructing a confidence interval, the recipe for testing a hypothesis
is short and simple.

Step 1 Find α.

Step 2 Find the quantile that is appropriate for either a one or a two-sided test.

Step 3 Compute the test statistic.
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Step 4 Does the test statistic satisfy the criterion for rejection?

Step 5 Make a decision.

Example 3. Let X1 X2 . . . , X20 be i.i.d. Normal with σ2 = 1.0, x̄ = 14.5. Test the
hypothesis: H0 : µ = 15 vs H1 : µ 6= 15 at the level of significance, α = .01.

1. α = .01 (Two-sided test) → α
2
= .005

2. zα

2
= z.005 = 2.58

3. Z = x̄−µ0
σ

√

n

= 14.5−15
√

1
√

20

= −2.236

4. Is Z = −2.236 < −2.58 or Z = −2.236 > 2.58? No

5. Cannot reject null hypothesis at a level of significance of .01.

Same problem but test at level of significance, α = .05.
Let X1 X2 . . . , X20 be i.i.d. normal with σ2 = 1.0, µ = 14.5. Test the hypothesis:

H0 : µ = 15 vs H1 : µ 6= 15 at the level of significance of .05.

1. α = .05 (Two-sided test) → α
2
= .025

2. zα

2
= z.025 = 1.96

3. Z = x̄−µ0
σ

√

n

= 14.5−15
√

1
√

20

= −2.236

4. Is Z = −2.236 < −1.96 or Z = −2.236 > 1.96? Yes

5. Reject null hypothesis at a level of significance of .05.

Example 4. Let X1 X2 . . . , X15 be i.i.d. N(µ, σ2) where σ2 is unknown but x̄ = 40
and s2 = 120. Test the hypothesis: H0 : µ = 45 vs H1 : µ < 45 at the level of significance
of α = .025.

1. α = .025 (One-sided test)

2. tn−1,α = t14,.025 = 2.145

3. T = x̄−µ0
s

√

n

= 40−45
√

120
√

15

= −1.7678

4. Is T = −1.7678 < −2.145? No

5. Cannot reject null hypothesis at a level of significance of .025.

8



Same problem but test at a level of significance of .10.
Let X1 X2 . . . , X15 be i.i.d. N(µ, σ2) where σ2 is unknown but x̄ = 40 and s2 = 120.

Test the hypothesis: H0 : µ = 45 vs H1 : µ < 45 at the level of significance, α = .10.

1. α = .10 (One-sided test)

2. tn−1,α = t14,.10 = 1.345

3. T = x̄−µ0
s

√

n

= 40−45
√

120
√

15

= −1.7678

4. Is T = −1.7678 < −1.345? Yes

5. Reject null hypothesis at a level of significance of .10.

The preceding two examples illustrate the influence of α in determining the outcome
of conducting a test. A smaller α betrays the manager’s apprehension of committing an
error in making a decision. Perhaps the risks are too high, as might be the case of a
pharmaceutical company board of directors deciding to market a new drug or to forego
an opportunity to make a profit. If the decision to market a new drug is wrong, then the
company might have to bear the consequences of many expensive lawsuits for compensating
the harmful effects of the drug on its users or if the decision not to market the new drug
is wrong, then the company will lose an opportunity to make a profit. In light of the
risk and benefits which will be incurred by the decision, the managers stipulate a level
of tolerance for making a mistake. A small tolerance which a small α implies means that
the null hypothesis that the drug is harmful can only be rejected based on overwhelming
evidence. Not rejecting the null hypothesis does not mean that the drug is harmful; it
means that there is insufficient evidence to conclude that the drug is beneficial. There is
no theoretical method to ascertain the best α and β. Ultimately, an arbitrary decision must
be made in practice by someone who is in a position of responsibility and who believes
that the stipulated α and β properly address the concerns over risk and benefits which
are incurred by making a decision. In response to the temptations of making big profits
at the expense of compromising the health of consumers, Theodore Roosevelt signed into
law in 1906 the Food and Drug Act which was at first administered by the United States
Department of Agriculture. Through various amendments and changes in organization,
the Food and Drug Administration was created in 1953 to guarantee that the tests of
hypotheses for approving a drug are stringent enough to protect the welfare of society.
Indeed, an understanding of the theory of statistics governs huge appropriations of public
funds and lies at the core of running an efficient enterprise.

1.1 p-value

In the preceding example, two different conclusions were made even when the sets of data
are identical. What changed was the specification of α. When α = .025, the null hypothesis
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was not rejected, whereas when α = .10, the null hypothesis was rejected. The conclusion
not only depends on the hypothesis and on the data but also on α.

Table 3: Effect of Changing α on Making a Decision

α tn−1,α Decision

.025 2.145 Cannot Reject

.03 2.046 Cannot Reject

.04 1.887 Cannot Reject

.04943599 1.7678 ????

.05 1.7613 Reject

.06 1.656 Reject

.07 1.565 Reject

.10 1.345 Reject

In that example, the test statistics, T=-1.7678, for the one sided hypothesis: H0 : µ =
45 vs H1 : µ < 45 does not change with the level of significance. Regardless of α, the test
statistic remains fixed because it is derived from the data. It is then used to determine if
the null hypothesis should be rejected according to the criterion: reject when T < −tn−1,α.
It is the criterion which changes according to α. It is α which determines the decision
whether or not to reject the null hypothesis. To illustrate this point, Table 3 shows the
dependency of making a decision on α. As α changes, there comes a time when the decision
reverses. At that point, α assumes a singular importance because it marks the boundary
between accept and reject the null hypothesis. That special α occurs when T = tn−1,α

and it is marked in the table by ????. That α at which the quantile exactly equals the
test statistic occurs exactly on the boundary of deciding to reject or not reject the null
hypothesis. That particular value of α is called the p-value. An α which is larger than the
p-value will cause the null hypothesis to be rejected, and when a value of α is less than
the p-value the null hypothesis cannot be rejected.

Definition 2. 1. That α such that Z = zα is called the p-value for a one-sided test
when σ2 is known.

2. That α such that Z = zα

2
is called the p-value for a two-sided test when σ2 is known.

3. That α such that T = tn−1,α is called the p-value for a one-sided test when σ2 is
unknown.

4. That α such that T = tn−1,α
2
is called the p-value for a two-sided test when σ2 is

unknown.
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Because of animosity which erupted between Karl Pearson and Ronald Fisher who led
the development of modern statistics, the p-value which Pearson favored was replaced by
the use of testing hypotheses at regular values of α like .10, .05, and .025. Due to the
feud which developed between them and Fisher’s profound influence on the teaching of
statistics, Fisher’s use of regular values of α prevailed for decades. Fisher’s custom of using
regular values of α was a result of Fisher’s lack of resources to reproduced the extensive
tables of Pearson’s which were protected by copyright. Today, with the ready access of
computers, not only can tables which are protected by copyright be circumvented but
the computation of p-values have become routine. In a certain sense, the computer has
vindicated Pearson’s opinion of using a p-value over the use of regular values of α.

A p-value offers a statistician an easy way to assess the importance of α. If a p-value
is extremely small then in order to reject the null hypothesis, only a very slightly larger
α is sufficient. In other words, a very small p-value like .0001 implies that an α of .00011
is sufficient to reject the null hypothesis. Such a small α indicates that it is very unlikely
that a Type-I error will be committed in rejecting the null hypothesis. On the other hand,
if the p-value is rather large like .30 then one can conclude that even as large an α as .29
is not sufficient to cause the null hypothesis to be rejected with much satisfaction since
the odds of committing a Type-I error is about as bad as flipping a coin. The availability
of a p-value provides a way for a statistician to make a quick decision about the null
hypothesis.

Computing a p-value by hand requires access to a large volume of tables, and, on that
account, it is not practical unless a computer is available. With the aid of a computer,
p-values can be easily obtained, provided, of course, that a functional computer program
exists.

Theorem 1. Given that Z and T are the test statistics for the hypothesis H0 : Θ = Θ0

regarding the mean of a population, the p-values are given by:

1 p− value = P (z > Z) for one-sided test when σ2 is known
2 p− value = 2P (z > |Z|) for two-sided test when σ2 is known
3 p− value = P (tn−1 > T ) for one-sided test when σ2 is unknown
4 p− value = 2P (tn−1 > |T |) for two-sided test when σ2 is unknown

Proof. Proving two items will be sufficient to illustrate the proof of the others. Consider
the case of a one-sided case when the variance is known. By definition of p-value, p is that
α such that Z = zp. By Theorem 21, P (z ≥ zp) = p, but Z = zp so that by replacing zp

1

Theorem 2. P (z ≥ zα) = α.

Proof. P (z ≥ zα) = 1− P (z ≤ zα) = 1− (1− α) = α. �
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with Z, we arrive at the formula, P (z ≥ Z) = p.
For formula 4, the proof is similar. By definition of p-value, p is that α such that the T

test statistic exactly equals the t quantile, that is, |T | = tn−1, p
2

. Since, P (tn−1 ≥ tn−1, p
2

) = p

2

and by replacing tn−1, p
2

with T, we arrive at the formula, P (tn−1 > T ) = p

2
and the fourth

formula is proved. �

1.2 Difference between One-sided and Two-sided Tests

In the next example, a comparison is made between a one-sided test and a two-sided test
at the same level of significance and using the same data.

Example 5. Let X1 X2 . . . , X56 be i.i.d. N(µ, σ2) where σ2 is unknown but x̄ = 297.7
and s2 = 4517.09. Test the hypothesis: H0 : µ = 315 vs H1 : µ 6= 315 at the level of
significance of .05.

1. α = .05 (Two-sided test) → α
2
= .025

2. tn−1,α
2
= t55,.025 = 2.004045

3. T = x̄−µ0
s

√

n

= 297.7−315
√

4517.09
√

56

= −1.926242

4. Is T = −1.926242 < −2.004045 or T = −1.926242 > 2.004045? No

5. Cannot reject null hypothesis at a level of significance of .05.

Let X1 X2 . . . , X56 be i.i.d. N(µ, σ2) where σ2 is unknown, but x̄ = 297.7 and s2 =
4517.09. Test the hypothesis: H0 : µ = 315 vs H1 : µ < 315 at the level of significance of
.05.

1. α = .05 (One-sided test)

2. tn−1,α = t55,.05 = 1.673034

3. T = x̄−µ0
s

√

n

= 297.7−315
√

4517.09
√

56

= −1.926242

4. Is T = −1.926242 < −1.673034? Yes

5. Reject null hypothesis at a level of significance of .05.

It appears that the one-sided test is more stringent than the two-sided test because
it leads to a definite rejection of the null hypothesis. Upon examining the alternative
hypothesis, the one-sided hypothesis indicates that additional information is known, in
that µ is presumed to be negative while on the other hand that knowledge is absent in the
two-sided test. A picture of the probability distribution under each circumstance shows

12



that the quantile in the two-sided test must be different than the quantile for the one-sided
test, in order to keep the areas under the curves the same at .95. A larger quantile must
be used in the two-side test in order to compensate for the lack of information about the
sign of µ.

For One−sided Test

 

 

|
1.6730

0

.95

For Two−sided Test

 

 

|
2.004

|
−2.004

0

.95

2 Equivalence of Testing Hypotheses and Confidence

Intervals

The picture pertaining to the one-sided test on the left suggests an equivalent interpreta-
tion of testing a hypothesis. It would seem that one could assert that a one-sided test is
the same as determining if T = µ0−x̄

s
√

n

∈ (−∞, 1.6730) or with some algebraic rearranging,

a test of hypothesis appears to be equivalent to ascertaining if µ0 ∈ (−∞, x̄ + s
√

n
tn−1,α),

that is, if 315 ∈ (−∞, 312.7259) and, because 315 is not in that interval, the hypothesis
that µ = 315 is false at α = .05. The picture on the right suggests, in a similar line of
reasoning that in a two-sided test the null hypothesis is rejected if µ0−x̄

s
√

n

/∈ (−tn−1,α
2
, tn−1,α

2
)

or equivalently the null hypothesis is rejected when µ0 /∈ (x̄− s
√

n
tn−1,α

2
, x̄+ s

√

n
tn−1,α

2
). This

last interval is nothing other than a confidence interval. Testing a hypothesis and looking
at a confidence interval are equivalent approaches to answering the same question about
whether or not an estimate is good.

Recall that P (µ ∈ (x̄− s
√

n
tn−1,α

2
, x̄+ s

√

n
tn−1,α

2
)) = 1− α. We do not know whether µ

might be in the interval or outside it. A confidence interval gives an indication of where µ
might be. It is asserted in the null hypothesis that µ = µ0. Based on experimental data,
an estimate of µ is given by x̄ and, at the same time, σ2 is estimated by s2. The null
hypothesis is rejected in a two-sided test when T < −tn−1,α

2
or T > tn−1,α

2
. Given the test

statistic, T = x̄−µ0
s

√

n

and applying a few simple algebraic manipulations, the criterion of
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rejecting H0 is the same as x̄ ≤ µ0 − s
√

n
tn−1,α

2
or x̄ ≥ µ0 +

s
√

n
tn−1,α

2
. These inequalities

are equivalent to the statement of rejecting H0 when µ0 /∈ (x̄− s
√

n
tn−1,α

2
, x̄+ s

√

n
tn−1,α

2
) at

the 100(1− α)% level of significance.
The advantage of testing a hypothesis in terms of confidence intervals is that the use

of confidence intervals provides an excuse for using pictures in one’s presentation of the
results. A judicious use of pictures which confidence intervals offers greatly improves the
success of making a persuasive argument.

3 Paired Difference Test

A special kind of test, called the paired difference test, is useful when there is a need to
determine if a treatment produces a noticeable difference on a subject. Commonly, the test
is used to assess the difference in the effects of a treatment before and after it is applied
to the same subject. There must be an exact pairing in order to make any sense out of a
paired difference test.

Example 6. An instructor at a college is curious to learn whether his students benefit
from attending his lectures. He conducts an experiment in which he administers an exam-
ination to some students before a lecture and an examination to the same students after a
lecture in such a way that the memory of the first examination does not affect a student’s
performance on the second examination. Over the years, the instructor has assiduously
observed his students and having gained an insight into their attitudes, he applied his per-
sonal opinions in designing what would have to be well designed examinations. The results
of the experiment are given below.

Student’s Before After Improvement
Name Lecture Lecture (Difference, di)

Abe 65 80 15
John 80 100 20
Tina 70 90 20
Jack 50 95 45
John 80 80 0

Total 100

The instructor, subsequently, tests the worst case, namely the hypothesis that attending
lecture does not improve a quiz grade at a level of significance of .05, i.e. H0 : µd = 0 vs
H1 : µd > 0 at α = .05.
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Of course, σ2 is unknown; therefore, the instructor must resort to a T test statistic.
From the data, the instructor calculates d̄ = 20 and the sample standard deviation of the
differences to be s = 16.2019.

1. α = .05 (One-sided test)

2. tn−1,α = t4,.05 = 2.132

3. T = d̄−µ0
s

√

n

= 20−0
16.2019

√

5

= 2.7603

4. Is T = 2.7603 > 2.132? Yes

5. Reject null hypothesis at a level of significance of .05 that attending lecture makes
no difference in examination scores. In conclusion, the instructor’s self-esteem is
reassured to his immense satisfaction, and the students learn to appreciate, once
again, the practical benefits of attending lecture.

The decision to do a paired difference test depends on the design of the experiment.
The key idea which must be kept in mind and which underscores the experiment is that a
subject undergoes an examination twice; once before the treatment is applied and again
afterwards. In the next section, the test of hypothesis between two means might easily be
confused with the paired difference test. The design of the experiment dictates which test
to use. If an element is drawn from a population and is examined twice, once before and
again after the application of a treatment, then the paired difference test is appropriate.
If two samples are drawn from different populations and the experiment is so designed as
to examine the difference between the means of the two populations, then the test in the
next section is appropriate.

4 Testing a Hypothesis between Two Means

Thus far, the testing of a hypothesis involved a mean and a constant. The null hypothesis
states that the distance, d0, between the mean, µ, and a constant, µ0, is zero; that is,
H0 : µ − µ0 = d0 = 0. A picture of this situation appears below where x̄ is, as before, the
estimate of µ.
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If d0 is very small, then one would surmise that for practical purposes µ = µ0. If, on the
other hand, the distance between x̄ and µ0 is very large, then it would seem very unlikely
that µ and µ0 would be the same. The null hypothesis is rejected, if d0 is too big. It cannot
be rejected when d0 is small. The question of how big is big and how small is small is
answered by referring to a measuring stick which we know as a quantile. The quantile is
the statistical measuring stick by which d0 is determined to be big or small. In order to use
a quantile for that purpose, the distance between x̄ and µ0 must be transformed into a test
statistic. If the test statistic is too big relative to the quantile, then the null hypothesis is
rejected.

The origins of µ0 might be obvious or theoretical. In any case, it is a parameter of
a probability distribution which is being advanced to describe some characteristic of a
population. It is certainly possible that µ0 might not be known theoretically so that its
value must be estimated from another experiment. In that case, it is no longer a constant
but a random variable and must be associated with a probability distribution. One might
wonder if this other distribution which now supersedes the constant, µ0, is identical to
the distribution of x̄. In other words, could the distance between µ1 which represents the
mean of one distribution and µ2 which represents the mean of the other distribution be so
small, that, for practical purposes, the means are the same and thereby suggest that the
distributions are actually identical.

 

 

 

 

x1 x2d0
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The determination of whether d0 is big or small is accomplished by comparing an
appropriate test statistic with a quantile. If d0 is very small, then for practical purposes,
µ1 and µ2 can be deemed to be the same; otherwise, if d0 is very large, then the assertion
that the means are the same must be rejected. To begin that determination, the difference
between x̄1 and x̄2 must be transformed into a test statistic which involves the process of
weaving the information of two distributions together into one, in order to derive the right
probability distribution for getting a quantile. Once the test statistic is computed, then
it can be compared to a suitable quantile of that probability distribution. The criteria for
rejecting the null hypothesis involving two Normal distributions is given below.

H0 Test Statistic H1 Reject When

When σ2
1 and µ2 − µ1 < d0 Z < −zα

σ2
2 are known µ2 − µ1 = d0 Z = x̄2−x̄1−d0

√

σ
2
1

n1
+

σ
2
2

n2

µ2 − µ1 > d0 Z > zα

µ2 − µ1 6= d0 Z < −zα

2
or Z > zα

2

When σ2
1 and µ2 − µ1 < d0 T < −tν;α

σ2
2 are unknown µ2 − µ1 = d0 T = x̄2−x̄1−d0

Sp

√

1

n1
+ 1

n2

µ2 − µ1 > d0 T > tν;α

but σ2
1 = σ2

2 µ2 − µ1 6= d0 T < −tν;α
2
or T > tν;α

2

Combining the essentials of two Normal distributions leads to the calculation of S2
p =

(n1−1)s2
1
+(n2−1)s2

2

n1+n2−2
which is called the pooled variance and ν = n1 + n2 − 2, the degrees of

freedom.

Example 7. An editor of an employment newspaper is curious if the wages paid by
Wal-Mart and by K-Mart are different. Ten workers chosen at random from a local Wal-
Mart store and 12 from a K-Mart store were interviewed. Based on the interviews the
following information was obtained.

Store x̄ s

#1 Wal-Mart $23,600 $3,200
#2 K-Mart $24,800 $3,700

The question posed by the editor is: Does K-Mart pay better than does Wal-Mart at a
level of significance of α = .05?

Let µ1 be the salary from Wal-Mart and let µ2 be the salary from K-Mart. Assume that
σ1 = σ2.

The question is equivalent to a test of hypothesis, namely: H0 : µ1 − µ2 = 0 vs H1 :
µ1 − µ2 < 0 at the level of significance of .05.
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1. α = .05 (One-sided test) where ν=10+12-2=20

2. tν,α = t20,.05 = 1.725

3. s2p =
(10−1)32002+(12−1)37002

20
= 12137500 → sp = 3484

4. T = x̄1−x̄2−d0

sp

√

1

n1
+ 1

n2

= 23600−24800−0

3484
√

1

12
+ 1

10

= −.8044

5. Is T = −.8044 < −1.725 = t20,.05? No

6. Cannot reject null hypothesis at a level of significance of .05. There does not appear
to be a difference in salaries paid by the stores.

Example 8. A random sample of size n1 = 25 taken from a normal population with
population standard deviation σ1 = 5.2 has sample mean x̄1 = 81. A second random
sample of size n2 = 36 taken from a different normal population with a population standard
deviation σ2 = 3.4 has a mean x̄2 = 76. Test the hypothesis at the 0.06 level of significance
that µ1 = µ2 against the alternative µ1 6= µ2.

H0 : µ1 = µ2 vs H1 : µ1 6= µ2

or H0 : µ1 − µ2 = 0 vs H1 : µ1 − µ2 6= 0 where d0 = 0
What do we know?
n1 = 25 n2 = 36
x̄1 = 81 x̄2 = 76
σ1 = 5.2 σ2 = 3.4
The alternative hypothesis indicates that the test is a two-sided test. We surmise that the

variances are known since from the terminology, a population standard deviation implies
that the variance is known and will be provided; therefore the Z test statistic is calculated
and compared to a z-quantile. It should be noted that the order of x̄1 and x̄2 is important
and it must follow the order of µ1 and µ2 in the null hypothesis.

1. α = .06 hence α
2
= .03

2. z.03 = 1.88

3. Z = x̄1−x̄2−d0
√

σ
2
1

n1
+

σ
2
2

n2

= 81−76−0
√

5.22

25
+ 3.42

36

= 5
1.18436

= 4.22

4. Is 4.22 < −1.88 or 4.22 > 1.88? Yes

5. Reject null hypothesis.

For the sake of curiosity, the 94% confidence interval for µ1 − µ2 is constructed.

1. α = .06 so α
2
= .03
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2. z.03 = 1.88

3. Lower bound a = x̄1 − x̄2 −
√

σ2

1

n1
+

σ2

2

n2
z.03 = 5− 1.18436(1.88) = 2.773403

4. Upper bound b = x̄1 − x̄2 +
√

σ2

1

n1
+

σ2

2

n2
z.03 = 5 + 1.18436(1.88) = 7.226597

5. 94% CI for µ1 − µ2 = (2.77,7.23).

6. Question: Is 0 ∈ (2.77, 7.22)? No. Therefore, we may reject the null hypothesis that
µ1 = µ2 at a level of significance of .06.
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|
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Cumulative Probabilities for a N(0,1) Distribution: Φ(z)− .5

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.00000 0.00399 0.00798 0.01197 0.01595 0.01994 0.02392 0.0279 0.03188 0.03586

0.1 0.03983 0.04380 0.04776 0.05172 0.05567 0.05962 0.06356 0.06749 0.07142 0.07535

0.2 0.07926 0.08317 0.08706 0.09095 0.09483 0.09871 0.10257 0.10642 0.11026 0.11409

0.3 0.11791 0.12172 0.12552 0.12930 0.13307 0.13683 0.14058 0.14431 0.14803 0.15173

0.4 0.15542 0.15910 0.16276 0.16640 0.17003 0.17364 0.17724 0.18082 0.18439 0.18793

0.5 0.19146 0.19497 0.19847 0.20194 0.20540 0.20884 0.21226 0.21566 0.21904 0.22240

0.6 0.22575 0.22907 0.23237 0.23565 0.23891 0.24215 0.24537 0.24857 0.25175 0.25490

0.7 0.25804 0.26115 0.26424 0.26730 0.27035 0.27337 0.27637 0.27935 0.28230 0.28524

0.8 0.28814 0.29103 0.29389 0.29673 0.29955 0.30234 0.30511 0.30785 0.31057 0.31327

0.9 0.31594 0.31859 0.32121 0.32381 0.32639 0.32894 0.33147 0.33398 0.33646 0.33891

1.0 0.34134 0.34375 0.34614 0.34849 0.35083 0.35314 0.35543 0.35769 0.35993 0.36214

1.1 0.36433 0.36650 0.36864 0.37076 0.37286 0.37493 0.37698 0.37900 0.38100 0.38298

1.2 0.38493 0.38686 0.38877 0.39065 0.39251 0.39435 0.39617 0.39796 0.39973 0.40147

1.3 0.40320 0.40490 0.40658 0.40824 0.40988 0.41149 0.41309 0.41466 0.41621 0.41774

1.4 0.41924 0.42073 0.42220 0.42364 0.42507 0.42647 0.42785 0.42922 0.43056 0.43189

1.5 0.43319 0.43448 0.43574 0.43699 0.43822 0.43943 0.44062 0.44179 0.44295 0.44408

1.6 0.44520 0.44630 0.44738 0.44845 0.44950 0.45053 0.45154 0.45254 0.45352 0.45449

1.7 0.45543 0.45637 0.45728 0.45818 0.45907 0.45994 0.46080 0.46164 0.46246 0.46327

1.8 0.46407 0.46485 0.46562 0.46638 0.46712 0.46784 0.46856 0.46926 0.46995 0.47062

1.9 0.47128 0.47193 0.47257 0.47320 0.47381 0.47441 0.47500 0.47558 0.47615 0.47670

2.0 0.47725 0.47778 0.47831 0.47882 0.47932 0.47982 0.48030 0.48077 0.48124 0.48169

2.1 0.48214 0.48257 0.48300 0.48341 0.48382 0.48422 0.48461 0.48500 0.48537 0.48574

2.2 0.48610 0.48645 0.48679 0.48713 0.48745 0.48778 0.48809 0.48840 0.48870 0.48899

2.3 0.48928 0.48956 0.48983 0.49010 0.49036 0.49061 0.49086 0.49111 0.49134 0.49158

2.4 0.49180 0.49202 0.49224 0.49245 0.49266 0.49286 0.49305 0.49324 0.49343 0.49361

2.5 0.49379 0.49396 0.49413 0.49430 0.49446 0.49461 0.49477 0.49492 0.49506 0.49520

2.6 0.49534 0.49547 0.49560 0.49573 0.49585 0.49598 0.49609 0.49621 0.49632 0.49643

2.7 0.49653 0.49664 0.49674 0.49683 0.49693 0.49702 0.49711 0.49720 0.49728 0.49736

2.8 0.49744 0.49752 0.49760 0.49767 0.49774 0.49781 0.49788 0.49795 0.49801 0.49807

2.9 0.49813 0.49819 0.49825 0.49831 0.49836 0.49841 0.49846 0.49851 0.49856 0.49861

3.0 0.49865 0.49869 0.49874 0.49878 0.49882 0.49886 0.49889 0.49893 0.49896 0.49900
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tν,α

α

Quantiles for a Student’s t Distribution
ν tν,.20 tν,.15 tν,.10 tν,.05 tν,.025 tν,.01 tν,005

1 1.37638 1.96261 3.07768 6.31375 12.7062 31.82052 63.65674

2 1.06066 1.38621 1.88562 2.91999 4.30265 6.964560 9.92484

3 0.97847 1.24978 1.63775 2.35338 3.18245 4.54070 5.84091

4 0.94096 1.18957 1.53321 2.13185 2.77645 3.74695 4.60410

5 0.91954 1.15577 1.47588 2.01505 2.57058 3.36493 4.03216

6 0.90570 1.13416 1.43976 1.94318 2.44691 3.14267 3.70743

7 0.89603 1.11916 1.41492 1.89458 2.36462 2.99795 3.49948

8 0.88889 1.10815 1.39682 1.85955 2.30600 2.89646 3.35539

9 0.88340 1.09972 1.38303 1.83311 2.26216 2.82144 3.24984

10 0.87906 1.09306 1.37218 1.81246 2.22814 2.76377 3.16927

11 0.87553 1.08767 1.36343 1.79588 2.20099 2.71808 3.10581

12 0.87261 1.08321 1.35622 1.78229 2.17881 2.68100 3.05454

13 0.87015 1.07947 1.35017 1.77093 2.16037 2.65031 3.01228

14 0.86805 1.07628 1.34503 1.76131 2.14479 2.62449 2.97684

15 0.86624 1.07353 1.34061 1.75305 2.13145 2.60248 2.94671

16 0.86467 1.07114 1.33676 1.74588 2.11991 2.58349 2.92078

17 0.86328 1.06903 1.33338 1.73961 2.10982 2.56693 2.89823

18 0.86205 1.06717 1.33039 1.73406 2.10092 2.55238 2.87844

19 0.86095 1.06551 1.32773 1.72913 2.09302 2.53948 2.86093

20 0.85996 1.06402 1.32534 1.72472 2.08596 2.52798 2.84534

21 0.85907 1.06267 1.32319 1.72074 2.07961 2.51765 2.83136

22 0.85827 1.06145 1.32124 1.71714 2.07387 2.50832 2.81876

23 0.85753 1.06034 1.31946 1.71387 2.06866 2.49987 2.80734

24 0.85686 1.05932 1.31784 1.71088 2.06390 2.49216 2.79694

25 0.85624 1.05838 1.31635 1.70814 2.05954 2.48511 2.78744

26 0.85567 1.05752 1.31497 1.70562 2.05553 2.47863 2.77871

27 0.85514 1.05673 1.31370 1.70329 2.05183 2.47266 2.77068

28 0.85465 1.05599 1.31253 1.70113 2.04841 2.46714 2.76326

29 0.85419 1.05530 1.31143 1.69913 2.04523 2.46202 2.75639

30 0.85377 1.05466 1.31042 1.69726 2.04227 2.45726 2.75000

40 0.85070 1.05005 1.30308 1.68385 2.02108 2.42326 2.70446

50 0.84887 1.04729 1.29871 1.67591 2.00856 2.40327 2.67779

75 0.84644 1.04365 1.29294 1.66543 1.99210 2.37710 2.64298

100 0.84523 1.04184 1.29007 1.66023 1.98397 2.36422 2.62589

150 0.84402 1.04003 1.28722 1.65508 1.97591 2.35146 2.60900

∞ 0.84162 1.03643 1.28155 1.64485 1.95996 2.32635 2.57583

21


