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1 Probability

Predict

Infer

Humpty Dumpty sat on a wall
Humpty Dumpty had a great fall
All the King’s horses and all the King’s men
Could not put Humpty Dumpty together again.

Probability and statistics go together like ham and eggs. They are two sides of the
same coin. Probability goes in one direction; statistics goes in the other, in the same sense
as differential and integral calculus, or in the sense of Humpty Dumpty’s ill starred fate. A
probabilist is concerned with predicting what will Humpty Dumpty look like after his fall.
All the King’s horses and all the King’s men are the statisticians who try to infer based on
the gory details what Humpty Dumpty looked like before his fateful fall. The probabilist
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tells us the laws and theorems which are used to predict the outcome; the statisticians use
those laws and theorems to infer the origins of the data.

The usefulness of descriptive statistics is limited to that purpose of describing a set of
data by a few numbers. To go beyond the scope of descriptive statistics, it is necessary to
develop a new set of tools drawn from the science of probability. To that end, we will use
the theorems and procedures that are employed in probability for predicting the outcome
of an event.

Given a set of initial conditions and a model which describes the evolution of a phe-
nomenon, the probabilist tries to predict the outcome of an event. For example, given
the initial conditions of a bow and arrow and the equations of motion of a projectile, the
probabilist will seek to determine the probability that the arrow will hit the bull’s-eye.
The statistician, on the other hand, is given the impaled target with arrows and wants
to know where the arrows came from. He will use the same equations of motion and laws
of probability to work backwards from the data to a description of the population in a
process called inference.

In order to understand the techniques and concepts which the statistician utilizes, it
is necessary to study probability. In order to understand probability, it is necessary to
study abstract mathematics, because ironically abstract mathematics makes the concepts
of probability easy to understand. The key idea underlying probability is the notion of size.
In essence, the size of an event is called a probability; therefore, the study of probability
begins with the theory of sets and with learning different ways of measuring their sizes.
This is 20th century mathematics which Emile Borel and Henri Lebesgue were instrumental
in developing. It is abstract mathematics at its abstract; it is quite advanced and goes
by the name of measure theory. Although the mathematics of statistics becomes very
sophisticated very quickly, we will take advantage of the heuristic notions of measure
theory to understand the foundations of probability, and, in the same vein, we will not
dwell on the usually difficult mathematical derivations of the numerous formulas which we
are about to study.

2 Operations on Sets

We chose P to denote the set of elements of a population, and we chose S to denote the set
of elements of a sample which are drawn from a list L consisting of names for the purpose
of identifying elements of the population. From the beginning of the study of statistics, the
essential elements of our interest are collected into sets. Likewise, our study of probability
begins with the essential properties of sets and will eventually end with the formulation
of the basic though indispensable mathematical tools of the statistical trade. To arrive at
that end, we need to commence the study of probability by looking at a set.

Let Ω be a set.
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Figure 1

Definition 1. If A Ď Ω and B Ď Ω, then the set of all elements which are common to
both A and B is called the intersection of A and B. It is denoted by A X B.

Definition 2. If A Ď Ω and B Ď Ω, then the set of all elements of either A or B with
no duplications is called the union of A and B. It is denoted by A Y B.

Definition 3. If A Ď Ω and B Ď Ω and A X B is empty, then A and B are called
disjoint sets. The empty set is denoted by H.

For example, let A “ t1, 3, α, w,´1u and let B “ tα, β,´1, 0, eu. The union of A and
B is AYB “ tα, β, e, w,´1, 0, 1, 3u. By convention, we omit duplications. The intersection
of A and B is A X B “ tα,´1u.

Suppose Ω consists of eight elements as shown in Figure 1 and that Ω is divided into
two partitions, E1 and E2. The size of Ω “ 8; the size of E1 “ 3, and size of E2 “ 5.
Equivalently, the sizes of each set can be reported relative to the size of Ω, so that

size of E1

size of Ω
“ 3

8

size of E2

size of Ω
“ 5

8

size of Ω

size of Ω
“ 8

8

Rather than write the phrase, size of

size of Ω
, over and over again, we will substitute in its place

a certain set function according to the following definition:

Definition 4. Define P pq such that P pEq “ size of E

size of Ω
.

In our example then, P pE1q “ 3
8
, P pE2q “ 5

8
, and P pΩq “ 8

8
.

Because E1 and E2 have no common elements, they are disjoint; therefore, E1XE2 “ H,
and the union of E1 and E2 consists of all the elements of Ω; therefore, E1 Y E2 “ Ω. A
disjoint partitioning of Ω has a nice property with regard to measuring its size in terms of
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the sizes of its constituents. Observe that P pE1q`P pE2q “ 3
8

` 5
8

“ 1 “ P pΩq “ P pE1YE2q
i.e. P pE1 Y E2q=P pE1q ` P pE2q. With that observation in mind, we arrive at a very
important theorem:

Theorem 1. If E1 and E2 are subsets of Ω and if they are disjoint, then P pE1 YE2q “
P pE1q ` P pE2q.

Sometimes, when working with sets, our attention is focused on only one of them while
the rest are put together into the complement.

Definition 5. The complement of E, denoted by Ec, is the set of all elements of Ω
which are not elements of E.

Corollary 1. E Y Ec “ Ω.

Ω

1 A

Z

*

B

G1 G2

∆

Θ

Rather than partition Ω into two disjoint sets, E1 and E2, suppose two other subsets had
been defined like: G1 “ t1 A ∆ Zu and G2 “ t˚ Z θ l B Au. Although their union is Ω,
i.e. G1 Y G2 “ t1 Z A ∆ ˚ θ l Bu “ Ω, G1 and G2 are not disjoint because they have
common elements: G1 X G2 “ tA Zu.

Consider measuring their relative sizes: P pG1q “ 4
8
, P pG2q “ 6

8
, and P pG1 Y G2q “

P pt1 A ∆ Z ˚ Θ l Buq “ P pΩq “ 1. But notice that P pG1q `P pG2q “ 4
8

` 6
8

“ 10
8

‰ 1 “
P pΩq “ P pG1 Y G2q. The size of the union of G1 and G2 is not equal to the sum of their
sizes, if we blindly believed Theorem 1. Theorem 1 does not apply because its condition
is not satisfied by the construction of G1 and G2. Theorem 1 is valid only for disjoint
sets; however, G1 X G2 ‰ H. In order to rectify Theorem 1 for general application, it is
sufficient to observe that G1 X G2 is counted twice when Theorem 1 is used, once when
G1 is measured and again when G2 is measured. By taking away one count of G1 X G2,
we produce a general theorem.

Theorem 2. If G1 and G2 are subsets of Ω, then P pG1 Y G2q “ P pG1q ` P pG2q ´
P pG1 X G2q.
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Proof. To prove this theorem, we will use the trick that G1 Y G2 “ G1 Y pG2 ´ G1q “
G1 Y Gc

1 X G2.
By Theorem 1, P pG1 Y G2q “ P pG1 Y Gc

1 X Gq “ P pG1q ` P pGc
1 X G2q because G1

and Gc
1 X G2 are disjoint. We add zero to the right hand side, so that, P pG1 Y G2q “

P pG1q ` P pGc
1 X G2q ` P pG1 X G2q ´ P pG1 X G2q and use Theorem 1 again to combine

P pGc
1 XG2q `P pG1 XG2q into P pGc

1 XG2 YG1 XG2q which is equal to P ppGc
1 YG1q XG2q.

Therefore, P pG1 Y G2q “ P pG1q ` P pΩ X G2q ´ P pG1 X G2q “ P pG1q ` P pG2q ´ P pG1 X
G2q. �

Definition 6. A complete listing of all subsets of a set Ω is called the power set of Ω.

Example 1. If Ω “ t1 A ∆ ˚u, then

the power set of Ω “

$

’

’

’

’

&

’

’

’

’

%

tu
t1u tAu t∆u t˚u
t1Au t1∆u t1˚u tA∆u tA˚u t∆˚u
tA∆˚u t1∆˚u t1A˚u t1A∆u
t1A∆˚u

,

/

/

/

/

.

/

/

/

/

-

If a theorem can be proven for a power set, then it is true for all members of the
power set. The concept of a power set is useful when developing the theory of probability
and statistics, in order to guarantee complete generality and to prevent any exceptions
to the theorems to exist. A good mathematician prides himself in developing a theory
which is watertight and is certain not to have any unaccounted exceptions. Everything in
mathematics must be consistent and complete. The same motivation applies to probability.
In that light, a casual reflection of the definition of P() will reveal a major flaw in that
the function, P(), could have been defined to give any arbitrary value like: P pG1q “
0 P pG2q “ 1; or P pG1q “ 1

2
P pG2q “ 1

2
; or P pG1q “ 9

10
P pG2q “ 1

10
. There is nothing

mentioned thus far which dictates the definitive value of P() when it is applied to a set.
The function, P pq, has been arbitrarily defined, a circumstance which is not satisfactory
for a mathematician and begs for the establishment of a solid foundation upon which to
build the calculus of probability.
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Blaise Pascal
1623-1662

Pierre de Fermat
1601-1665

Historians of mathematics seem to agree that the birth of mathematical probability
occurred in 1654 during the correspondence of Pascal and Fermat. Not until 1933 was
probability placed on a solid foundation by the great 20th century mathematician, Andrei
Kolmogorov.

Andrei Nikolaevich Kolmogorov
( Andre� Nikolaeviq Kolmogorov)

1903-1987

3 Formal Definition of Probability

Axiom 1. 0 ď P pEq ď 1.

Axiom 2. P pΩq “ 1.

6



Axiom 3. If E1, E2, ¨ ¨ ¨ , En are pairwise disjoint subsets of Ω, then P pE1 YE2 Y ¨ ¨ ¨ Y
Enq “ P pE1q ` P pE2q ` ¨ ¨ ¨ ` P pEnq.

Definition 7. A function, P, that satisfies Axioms 1–3 is called a probability.

An axiom is a fundamental statement which cannot be proven. The axioms of proba-
bility support all the formulas which we will use, but the axioms are not sufficient. There
is nothing in the definition of probability which tells us what a probability should be
in a given situation. The missing piece of the puzzle must correspond to a fundamental
characteristic of the phenomenon which is being studied.

Before we proceed with the development of probability, the following definitions will
make our discussion easier.

Definition 8.

The sample space, Ω, is a set which consists of all possible outcomes.

An element of the sample space, Ω, is called an outcome.

A subset, E, of the sample space, Ω, is called an event.

If the event, E, consists of only one element, then E is called a simple event.

Let us conduct a simple experiment to illustrate the concept of probability. The exper-
iment is abstract, meaning that it will occur in our imagination. In this experiment, one
coin will be flipped. The outcome of getting a tail will be denoted by T, and the outcome
of getting a head will be denoted by H.

The sample space consists of two elements as depicted here.

T

H

Ω =

Let E1 “ tT u and E2 “ tHu. E1 and E2 are simple events; they are disjoint; their union
comprises the sample space. The fundamental characteristic of the experiment which will
dictate the value of a probability is the stipulation that the outcomes are equally likely
to occur. Assume that it is equally likely that the outcome T occurs as the outcome
H, i.e. P pE1q “ P pE2q “ p. Let P pq be a probability which implies that, by Axioms
1–3, P pΩq “ 1. Because E1 X E2 “ H, E1 and E2 are disjoint and, by Theorem 1,
1 “ P pΩq “ P pE1 Y E2q “ P pE1q ` P pE2q “ p ` p “ 2p; therefore, p “ 1

2
.

Recall that according to the original definition of P(), P pE1q “ size of E1

size of Ω
“ 1

2
. It

appears that the original definition of P() corresponds to the probability of equally likely
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outcomes. The notion of equally likely outcomes and the meaning of the phrase a fair
coin or fair dice are the same. If the outcomes are not equally likely, then we need more
information about the underlying phenomenon, in order to determine the right value of a
probability.

Let us conduct another experiment in which two fair coins are tossed.

Example 2. Two fair coins are tossed. The sample space is:

T T

H H

T H
H TΩ =

All possible outcomes are tTT TH HT HHu. In general, n fair coins produce 2n

possible outcomes. Let E “ tT T u. Find P pEq=P(event that both coins will land tails
up)=p. We have at our disposal two methods of finding the probability that the event, E,
will occur.

Method I p “ P pEq “ size of E

size of Ω
“ 1

4

Method II

1 “ P pΩq “ P pEq ` P ptT Huq ` P ptH T uq ` P ptH Huq
1 “ p ` p ` p ` p “ 4p by the assumption of equally likely outcomes

1 “ 4p Ñ p “ 1

4

It should not be forgotten that a probability is the relative measure of the size of an
event to the sample space.

Example 3. Let E be the event that at least one tail appears. Therefore, E “ tTT TH HT u.
P(E)=P(event that at least one tail appears)= size of E

size of Ω
“ 3

4

Example 4. Let G be the event that at most one tail appears. Therefore, G “ tHH HT THu.
P(G)=P(event that at most one tail appears)= size of G

size of Ω
“ 3

4

As the complexity of the problems grow, it will be helpful to have tools to use in solving
them. For example, the probability of the complement is useful to know.

Theorem 3. P pEcq “ 1 ´ P pEq.
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Proof. We note that since E and Ec are disjoint and that EYEc “ Ω, we may use Theorem
1; therefore,

P pE Y Ecq “ P pEq ` P pEcq
}

P pΩq “ 1 Ñ P pEcq “ 1 ´ P pEq
�

We may enumerate all possible outcomes for measuring the size of Ec, or we may use
Theorem 3 to obtain the same answer.

Example 5. Suppose E “ tTT TH HT u, then Ec “ tHHu hence P pEcq “
size of Ec

size of Ω
“ 1

4
. Or using Theorem 3 and the answer of the previous example, P pEcq “

1 ´ P pEq “ 1 ´ 3
4

“ 1
4
.

In general. when the outcomes are equally likely or, in other words, in fair games:
P pEq “ size of E

size of Ω
“ number of possibilities

total number of outcomes
.

Consider a more complicated example in which a fair coin is tossed and a fair die is
rolled. The sample space consists of all possible outcomes in which T will denote a tail, H
will denote a head, and the numbers 1, 2, 3, 4, 5, and 6 will denote the faces of the die.

Example 6. Flip a fair coin and toss a fair four-sided die.
Ω “ tT1 T2 T3 T4 H1 H2 H3 H4u.
Let E be the event of getting at most a 3. Then E “ tT1 T2 T3 H1 H2 H3u;

therefore, P pEq “ 6
8
.

Let G be the event of getting a tail and at least a 2, then G “ tT2 T3 T4u; therefore,
P pGq “ 3

8
.

Suppose that the events are not equally likely to occur. Sufficient information must
be provided, in order to make it possible to find the probabilities of the events. In the
following example, the probability of every simple event is given in the statement of the
problem.

Ω

E1
E2

E4

E5

E6

E7

ML

E3
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Example 7. P pE1q “ P pE5q “ 1
20

P pE2q “ P pE4q “ 1
10

P pE3q “ P pE7q “
1
5

and P pE6q “ 3
10
.

Find P pLq:
ANS: P pLq “ P pE1YE2YE3YE4q “ P pE1q`P pE2q`P pE3q`P pE4q “ 1

20
` 1

10
` 1

5
` 1

10
“

9
20
. We use Theorem 1 because all simple events are mutually disjoint.
Find P pL X M cq:
ANS: P pL X M cq “ P pE1 Y E3q “ P pE1q ` P pE3q “ 1

5
` 1

20
“ 1

4

Consider the experiment of rolling two fair dice. The sample space consists of all 36
possible outcomes:

Ω “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

11 12 13 14 15 16
21 22 23 24 25 26
31 32 33 34 35 36
41 42 43 44 45 46
51 52 53 54 55 56
61 62 63 64 65 66

,

/

/

/

/

/

/

.

/

/

/

/

/

/

-

What might look like numbers are actually names of the outcomes. The first digit cor-
responds to the face of the first die, and the second digit corresponds to the face of the
second die. The order of the digits is important. Imagine that the first die is colored red
and the second one colored white. The two dice are distinct, so that the outcome, 12, is
different from the outcome, 21. The order of faces is essential in this example.

Problem 1. What is the probability of the event, S, of casting sevens?

By drawing outcomes from out of the sample space, we construct the event

S “ t16, 25, 34, 43, 52, 61u

Because the outcomes are equally likely by the assumption that the dice are fair,

P pSq “ number of possibilities comprising the event

total number of outcomes
“ 6

36
“ 1

6

Likewise for the event, E, of casting an even number, the appropriate outcomes are
first listed. Let E be the event of casting an even number; therefore,
E “ t11, 13, 15, ¨ ¨ ¨ , 62, 64, 66u, so that P pEq “ 18

36
“ 1

2
.

What is the probability of casting a seven and getting an even number? Obviously, such
an event is impossible because seven is an odd number. To answer the question formally,
we find that P pS and Eq “ P pS X Eq “ P pHq “ 0

36
.

The probability of the event of casting a seven or getting an even number can be found
either by finding the relative size of the event once its outcomes have been listed or the
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probability can be found by means of Theorem 1 since the events S and E are disjoint, so
that P pS or Eq “ P pS Y Eq “ P pSq ` P pEq “ 6

36
` 18

36
“ 2

3
.

Let F be the event of rolling a 4 on any face, then

F “ t14, 24, 34, 44, 54, 64, 41, 42, 43, 45, 46u

Because of the rule which stipulates that duplicates are omitted allows only one 44 is listed
instead of two 44’s; therefore, P pF q “ 11

36
. The event of casting a seven and getting a four

on any face is the same as S XF “ t43, 34u, so that P pS and F q “ P pS XF q “ 2
36

“ 1
18
.

Example 8. What is the probability that the sum of the faces will be at most a 9 when
two fair dice are cast?

1. Let E be the event that the sum of the faces is at most a 9. A listing of E is:

E “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

11 12 13 14 15 16
21 22 23 24 25 26
31 32 33 34 35 36
41 42 43 44 45
51 52 53 54
61 62 63

,

/

/

/

/

/

/

.

/

/

/

/

/

/

-

2. Since the dice are fair, P pEq “ size of E

size of Ω
“ 30

36
“ 5

6
.

Another very popular experiment from which a vast array of problems in science rang-
ing from genetics to nuclear reactions can be modeled is the one of drawing balls from an
urn of different colored balls.

Example 9. Urn

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��

��
��
��

Suppose the urn contains 10 red balls and 7 white balls. What is the probability that a
ball drawn at random is a white ball?

1. Find the sample space:

Ω “ tR R R R R R R R R R W W W W W W W u
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2. Define E to be the event that a ball is white; therefore,

E “ tW W W W W W W u

and P pEq “ size of E

size of Ω
“ 7

17
.

Problems in which random sampling occurs raises a very important question. What
is meant by the phrase: draw at random? Referring to the previous example, the pro-
cess of picking a white ball is a random process only if # of white balls

total # of balls
Ñ 7

17
. If the

object is a fair coin, the process is random only if # of heads

total # of tosses
Ñ 1

2
. If a die, then

# of occurrences of a face

total # of casts
Ñ 1

6
. The arrows signify that the number of drawings tends to in-

finity, so that the ratio converges in the limit to the theoretical value for a fair process. If
the concept of drawing something at random seems abstruse, it is because it is abstruse.
The notion of randomness has provoked mathematicians and logicians to make attempts to
formulate a rigorous definition of randomness with the thought in mind that any pattern
whatsoever in the series of outcomes opposes the concept of randomness. Based on intu-
ition, a process is deemed random if it is impossible to predict the next outcome. Drawing
a certain colored ball from an urn should be absolutely unpredictable, if the drawing is per-
formed at random. Implementing this intuitive notion of randomness in a real experiment
constitutes the conundrum of the problem. As soon as a method is proposed to produce a
truly random sequence of outcomes like random digits, an exception is discovered which
shows that the process is either not feasible or not truly random. It is in the imaginary
world of probability that a truly random sampling can be implemented. In practice, there
is no known mechanism to draw a sample at random. Yet with each attempt of giving
a definitive meaning of randomness, mathematicians are coming closer to a final answer
which appears not to be too far in the future. The notion of randomness is one of those
concepts whose subtleties belie its simplicity.

4 Conditional Probability

There might be given additional information about an experiment which could improve
the knowledge of the likelihood of an outcome.

Suppose we know already that sevens have been cast after rolling a pair of fair dice.
What is the probability of getting a 4 on a face given that sevens have been cast? If it
is known for certain that a seven has been cast, then the sample space of all possible
outcomes must be:
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Ω “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

16
25

34
43

52
61

,

/

/

/

/

/

/

.

/

/

/

/

/

/

-

The event of getting a four on any face given that a seven has been cast must then be:
E “ t34, 43u, so that given the additional information about the experimental outcomes,
the size of the sample space decreases with the consequence that

P pgetting a four given that sevens were castq “ number of possibilities

total number of outcomes

“ 2

6
“ 1

3
“ 12

36

The conditional probability reduces the size of the sample space from 36 to 6 with the
consequence that the probability increases from 11

36
given on page 11 to 12

36
given above.

Definition 9. Denote the conditional probability by P pA|Bq which means: the prob-

ability of the event, A, given that the event, B, has occurred. Also P pA|Bq “ P pAXBq
P pBq .

Example 10. From page 11, P pF X Sq “ 2
36

and P pSq “ 1
6
; therefore,

P pF |Sq “ P pgetting a four given that sevens were castq

“ P pF X Sq
P pSq “

2
36
1
6

“ 12

36
“ 1

3

which is in agreement with the above calculation gotten by direct enumeration of the event.

In general, P pAq ‰ P pA|Bq as in P pF q “ 11
36

‰ 1
3

“ P pF |Sq. Not all information
is useful, however. Suppose the problem was posed this way: what is the probability of
getting a four on any face when two fair dice are cast given that the New York Yankees
won the World Series in 1927? Whether or not the Yankees ever won the World Series is
irrelevant to the casting of fair dice. In other words, the event, B, defined by the Yankees
winning the World Series does not influence the outcome of the event, A. In mathematical
terms, the statement which describes the event of casting a four on any face given that the
Yankees won the World Series in 1927 is written as: P pA|Bq “ P pAq. In other words, the
probability of casting a four on any face of a pair of fair dice is independent of the history
of baseball. The probability of A does not change because the event, B, has no influence
on the outcome of event, A. The independence of an outcome on another event is usually
very desirable in statistics.
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Definition 10. If P pA|Bq “ P pAq, then the events A and B are said to be indepen-

dent.

The concept of independence plays a central role in statistics. If there were no such
condition as independence, statistics would be essentially impractical for ordinary use.
That is why a statistician takes great pains to demonstrate that the events are independent
from each other; otherwise, the statistical analysis will be too complex and too formidable
to reach even a simple conclusion.

An alternative expression of independence is given by the following theorem:

Theorem 4. Suppose that events A and B are independent, then P pAXBq “ P pAqP pBq.

Proof. By independence,

P pA|Bq “ P pAq
}

P pA X Bq
P pBq

Therefore, by cross multiplying: P pA X Bq “ P pAqP pBq. �

Conversely,

Corollary 2. The events, A and B, are said to be independent if P pAXBq “ P pAqP pBq.

The concept of independent events bears no relation to the concept of disjoint sets.
Independent events are defined only in terms of probability whereas sets having no common
elements are disjoint sets without any mention of probability whatsoever.

Problem 2. A committee of quality control engineers at Westinghouse Electric Corpo-
ration evaluated the judgment of inspectors in assessing the quality of 153 soldered joints.
A tabulation of the results appears below.

Inspectors
Acceptable Defective Total

Acceptable 101 10 111
Committee

Defective 23 19 42

Total 124 29 153
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a. Let E be the event that the inspectors determine a joint to be acceptable. Out of
153 cases which comprise the sample space, the inspectors accepted 124 of them.
Assuming that the outcomes are equally likely to occur, P pEq “ 124

153
. On the other

hand, the probability that the inspectors rejected a soldered joint is the probability of
the complement that they accepted it; that is, P pEcq “ 1 ´ 124

153
“ 29

153
.

The counterpart to the group of inspectors is the committee of experts. Let G be
the event that the committee determines a joint to be acceptable. Using the same
reasoning as above for finding the probabilities about the inspectors, the probability
that the committee accepted a soldered joint is: P pGq “ 111

153
.

b. The probability that the committee and the inspectors agree that a joint is good is:
P pE X Gq “ 101

153
. The probability of the complement is the probability that both

cannot accept a joint, so that P ppE X Gqcq “ 1 ´ 101
153

“ 52
153

. The interpretation of
the complement implies that the committee and the inspectors not only might have
agreed to reject a joint but on some occasions they might have disagreed; that is, one
might have accepted a joint while the other rejected it.

c. Let H be the event that the committee and the inspectors simply agree one way or
the other, then P pHq “ 101`19

153
“ 120

153
. The probability that they disagree is: P pHcq “

1 ´ 120
153

“ 33
153

. The event that both groups agree includes the event that both reject a
joint whereas in the previous section both groups are seen to agree only when a joint
is a good one.

d. What is the probability that the committee will determine a joint to be acceptable given

that the inspectors have already accepted the joint? P pG|Eq “ P pEXGq
P pEq “

101

153

124

153

“ 101
124

.

The purpose of asking this question is to see if there is a dependency of the committee
on the judgment of the inspectors. If everyone is judging the joints correctly, then
the committee should agree with the decisions of the inspectors; P pG|Eq should be 1.

From part a, P pGq “ 111
153

, but P pG|Eq “ 101
124

; therefore, G and E cannot be indepen-
dent events. The results of Westinghouse’s experiment should cause one to wonder
why the events, E and G, are not independent. The committee and the inspectors
apparently are not acting independently. Perhaps some members of the committee
and some inspectors are acting in collusion with one another, or members of both
groups accurately followed the same soldering standards, or the experiment was flawed
somehow.

e. What is the probability that the committee will judge a joint acceptable when the

inspectors have rejected it? P pG|Ecq “ P pGXEcq
P pEcq “

10

153

29

153

“ 10
29
. But this should be 0, if

every one is doing his job correctly. Instead the probability is almost 35 percent. The
management at Westinghouse could have, for all practical purposes, flipped a coin
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in deciding whether or not the inspectors’ decisions in rejecting joints were valid
or invalid. In conclusion, perhaps the inspectors need to receive more training in
assessing soldered joint, or a better experiment needs to be performed to give more
reliable data.

A more important question is raised by this problem: Do the probabilities reflect actual
events? The answer to this question may be yes or no. In any case, the question is not
well formed in the first place. It is a trick question. In the axioms of probability or in
any example in which the value of a probability has been deduced, the sample space
is the starting point. A sample space and a population are fundamentally different. A
population consists by our definition of a set of real things which have substance and
which are perceptible. A sample space is a set of outcomes of an imaginary experiment.
The outcomes exist only in our imagination. They have no substance; they cannot be
perceived by any sense or instrument. A probability of an event is the relative size of that
subset of outcomes to the size of the sample space. Thus we talk about casting dice or
flipping coins only in the context of an imaginary experiment. To say that the probability
of getting a head is 1/2 bears no relation to the result of an actual flipping of a real coin.
A probability is defined in terms of sets whereas in a real experiment the outcome is either
a head or a tail, regardless of the notion of probability. An imaginary experiment and a
real experiment are not the same.

The axioms of probability purport no connection with the real world, whereas a statis-
tician deals with observations of the real world. The world of statistics and the world of
probability are separate and different. One is real; the other is imaginary. Later, we will
endeavor to build a bridge between these two worlds, and, by that bridge, we will intro-
duce into the world of statistics the full power of our imagination which will wield the vast
array of mathematical tools which will be at our disposal.

It should come as no surprise that problems found in the study of probability can be
very complex and very difficult to solve. Predicting the state of the national economy or
the weather a few weeks in advance are two such notoriously difficult problems. Successful
formulations of models and the associated mathematical theories for manipulating them
bring Nobel prizes to economists. A common tactic in solving a complex problem is the
military tactic of divide and conquer. Deducing the probability of a complicated event
might be possible, if the event is broken into manageable pieces. The process by which
an event is decomposed does not follow a methodical recipe, rather it relies on ingenuity.
An indispensable tool for conquering a complicated event is conditional probability. It can
be used successively many times until the event is adequately decomposed to render it
solvable. Ingenuity enters the process of conceiving a particular ancillary event, E, upon
which the original event, A, is conditioned. Both this ancillary event and its complement are
used for the purpose of reconstituting the original event from the pieces. If the ancillary
event, E, is very cleverly conceived, then it will be easy to deduce the probabilities of
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P pA|Eq and P pA|Ecq. Conditional probability forms the essence of the method of breaking
an event into pieces and the mechanism of doing so is expressed by Theorem 5.

Theorem 5. Let A and E be events, then P pAq “ P pA|EqP pEq ` P pA|EcqP pEcq.

This theorem decomposes an event into simpler ones. It should be noted that the
decomposition is done by means of an ancillary event, E, which is deliberately invented
for the purpose of breaking the event, A, into smaller and presumably more manageable
pieces.

E c

E

A

A

A c

A

P(A|E)

P(A |E)

P(A|E  )

P(A |E  )
c

Begin

c

c c

c

Figure 4 gives a graphical depiction of Theorem 5.

Example 11. Let E be the event of flipping a coin and getting a head; conversely, Ec is
the event of getting a tail. The experiment is more complicated than that because depending
on the outcome of flipping a coin either two dice are rolled or only one die is rolled as
illustrated by the following schematic diagram of the experiment.

Flip a coin
Hea

ds

Tails Roll one die

Roll two dice.

The sample space consisting of flipping a coin is:

T

H

E
c

E
Ω
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Let A be the event that the sum of the faces is 5. The outcome of A might happen by
casting one die or it might happen by casting two dice depending on the outcome of flipping
the coin. Find P pAq.

In itself, the event, A, is complicated enough to make the deduction of its probability a
challenge. The solution can be easily derived, however, by decomposing A according to the
events of casting one die or two dice.

P pAq “ P pA|EqP pEq ` P pA|EcqP pEcq

“ p 4

36
qp1
2

q ` p1
6

qp1
2

q “ 5

36

If a head occurs from the flip, then two dice are cast, hence P pA|Eq “ 4
36
, but if a tail

occurs, then one die is cast, hence P pA|Ecq “ 1
6
.

Example 12. An instructor of political science wishes to predict, without asking his
students, the political composition of his class. In other words, he wants to know the prob-
ability that a student would claim himself to be a Democrat, for instance. The instructor
knows from the class roster that there are 21 men and 28 women enrolled in the class.
From a newspaper article, the instructor learned the political affiliation of men and women
across the country. According to the newspaper article, the proportion of men and women
by political party is shown below in the table on the left, and according to the class roster,
the composition of the political science class is shown in the table on the right.

Democrat Republican

Men .38 .62
Women .56 .44

Proportion

Men 21 3
7

Women 28 4
7

Total 49

Given that D represents the event that a student is a Democrat, the instructor essen-
tially wants to find P pDq. The event, D, is too complicated for making the computation
easy. Consequently, the strategy in solving the problem is to decompose the event into
simpler pieces.

Let M be the event that a student is a man; equivalently, M c is the event that a student
is a woman. In order to utilize the information which the instructor saw in the newspaper,
he must assume that the political sentiments of college students closely reflect those of the
general population.

Before beginning the process of decomposing the event, D, the instructor, to be precise,
should define the sample space, Ω. Assuming that a student must be either a Democrat or
a Republican and nothing else, the sample space will be like the sample space of flipping
49 coins in which heads will stand for D and tails will stand for R. The sample space will
consist of 249 outcomes.
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According to the newspaper article, the outcomes are not equally likely. It is obvious
that a sample space of this size poses a formidable challenge in answering the instructor’s
curiosity. But conditioning reduces the size of the sample space. Given that a student is
a man reduces the sample space from 249 outcomes to two outcomes, namely, D|M and
R|M . Now it is easy to deduce from the left table that P pD|Mq “ .38. Similarly, given
that a student is a woman reduces the sample space from 249 to two elements, D|M c and
R|M c, so that P pD|M cq “ .56.

Not all choices of the ancillary event, M, are successful. There is no recipe for inventing
a good ancillary event like M. Many times, it is found by trial and error with ingenuity
and a little bit of luck. In any case, the utility of conditional probability makes it a very
popular technique for incorporating additional information into a problem, so that among
other purposes it can be used to divide a difficult event into manageable pieces.

The instructor may proceed in answering his question by doing the computations.

P pDq “ P pD|MqP pMq ` P pD|M cqP pM cq

“ .38

ˆ

3

7

˙

` .56

ˆ

4

7

˙

“ .482857

Independence is ideal. To have independent events certainly makes computations of
probability much easier. Of course, in the real world, everything is dependent on everything
else to some extent. Authors of science fiction like to exploit this when they write about
time travel, for instance. In the story, a traveler in time whether the hero or villain might
deliberately perturb an event which occurred in the past in a seemly insignificant way. No
matter how insignificant it might first appear, the perturbation offers for the delightful
author innumerable consequences which when magnified by the author’s imagination alter
the course of civilization in unexpected ways.

Dependencies might be so slim that for practical purposes, the events may be deemed
to be independent. A good example is the successful operation of a system of three com-
ponents connected in series.

.12 .09 .11

1 2 3

Component 1 fails with probability .12; component 2 fails with probability .09; component
3 fails with probability .11. If any one component fails, then the system will fail. It is
assumed that each component is independent of the others. The question which a reliability
engineer might ask is: what is the probability that the system will fail?

The system as described by the schematic diagram is an abstract one. The components
could represent electrical switches or shipments in a “just-in-time” inventory for a man-
ufacturer or examinations of a particularly stringent process for receiving a professional
certification.
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Let A be the event that component 1 fails, then P pAq “ .12. The probability that
component 1 functions correctly would then be P pAcq “ .88. Let B be the event that
component 2 fails, then P pBq “ .09; P pBcq “ .91. And let C be the event that component
3 fails, then P pCq “ .11; P pCcq “ .89.

To find the probability that the system works, we must recognize that all individual
components must work, that is, we need to find P pAcXBcXCcq. Now it is crucial to assume
that the components work independently. Recall from Theorem 4 that for independence,
P pA X Bq “ P pAqP pBq, so that

P pAc X Bc X Ccq “ P pAcqP pBcqP pCcq “ p.88qp.91qp.89q “ .712712

What is the probability that the system will fail? We need to find the probability of the
complement of the event that the system works. To that end, let S be the event that the
system works.

P pfailsq “ 1 ´ P pworksq “ 1 ´ P pSq “ 1 ´ P pAc X Bc X Ccq “ 1 ´ .712712 “ .287288

In a series configuration such as the one discussed above, all three components must
work, in order for the system to work. In a parallel configuration, the system will work if any
component will work. That is, the system will fail if all components fail. Suppose the three
components are connected in parallel rather than in series, then P pScq “ P pAcXBcXCcq “
.12p.09q.11 “ .001188; therefore, P pSq “ 1 ´ .001188 “ .998812. A parallel configuration
would be used for a system of sensors in a fire extinguisher system, for example. If any
sensor is actuated, the system will be turned on.

5 Random Variables

Although defining the sample space is the first step in solving a problem in probability,
the sample space usually contains too much information. In the example concerning the
tossing of several coins, the sequence of heads and tails might not be of interest; however,
the number of heads and the number of tails usually is the only desired information. In
the case of tossing three coins, the sample space consists of eight outcomes:

Ω “ tTTT, TTH, THT, THH, HTT, HTH, HHT, HHHu

Let E be the event that two and only two heads appear, E “ tTHH, HHT, HTHu. The
size of E equals the number of outcomes having two and only two heads. The order of the
heads and tails within an outcome is not useful information. If we are only interested in the
number of heads, then define Xpωq to be equal to the number of heads in the outcome, ω.
The event, E, can be interpreted to be the set of all outcomes, ω, lying in the sample space,
Ω, such that Xpωq “ 2. In terms of set notation, E “ tω P Ω such that Xpωq “ 2u. In this
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Figure 2

formulation of the event, E, the symbol for is an element of appears as P. It is derived from
the Greek verb, ༁στί, which means the same as the English word is. This notation is too
verbose. We will abbreviate such that by the common abbreviation, s.t., so that E “ tω P
Ω s.t. Xpωq “ 2u. Even that abbreviation is still too verbose for many mathematicians
who prefer to abbreviate such that by the symbol, |, as a result, a completely rigorous
definition of the event E is: E “ tω P Ω|Xpωq “ 2u. This is translated into English as:
the event, E, is the set of all outcomes in the sample space, Ω, such that an outcome
has exactly two heads. Whereas the mathematical statements uses fourteen symbols, the
English translation uses 86 symbols (including commas). The virtue of mathematics is
its parsimony of symbols. As the complexity of events increases, the English becomes
proportionally more obscure. A difficult challenge of mathematical comprehension faces
the historians of mathematics whenever they read mathematical treatises written as late as
the 18th century which usually are composed in Latin with hardly a mathematical symbol.
The mathematical works written in English of that era are equally as incomprehensible.
The invention and logical application of mathematical symbols which clears away the
convoluted prose truly deserves our gratitude.

The probability of the event of getting two heads can be written succinctly as: P pEq “
P ptω P Ω|Xpωq “ 2uq. The use of set notation emphasizes the fact that an event is a
set of outcomes of a sample space. In rigorous theoretical developments of probability, set
notation is employed to make the discussion absolutely clear and precise to the reader.
For the right audience, seasoned mathematicians will take the lazy way by omitting some
symbols. It is not uncommon to see the above statement written as: P pEq “ P pX “ 2q.
Whichever notation is used, it must bring to mind the connotations of sets.

With X defined to count the number of heads in an outcome, for example XptTTT uq “
0 and XptTTHuq “ 1, there are eight elements in the sample space, but there are only
4 values of X, namely 0, 1, 2, and 3. In effect, X reduces the size of the sample space as
depicted in Figure 2 and brings about a simplification in the name of clarity but at the
expense of loosing unwanted information like the actual sequence of the T’s and H’s.
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In another illustration of the resolution of a sample space into something simpler
through the use of a random variable, an experiment of rolling two fair dice is performed.
Let X equal the sum of the faces of the two dice.

Ω “

$
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The possible outcomes of X are: 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12. Rather than 36
elements, we deal with eleven values of X. In terms of a random variable, let E be the

event such that X=5, that is: E “
"

14, 23, 32, 41

*

“ tω P Ω|Xpωq “ 5u, so that

P pEq “ P ptω P Ω|Xpωq “ 5uq “ size of E

size of Ω
“ 4

36
“ 1

9

This set function, Xpωq, with which to consolidate useful information of a sample space
is recognized by a name.

Definition 11. A function, X, which maps an outcome of the sample space to a number
on the real line is called a random variable.

Example 13. Toss three fair coins. The sample space is the usual:

Ω “ tTTT, TTH, THT, THH, HTT, HTH, HHT, HHHu

Let X be the number of heads and Y be the number of tails in an outcome.

1. E1 “ tω P Ω|Xpωq “ 1u “ tHTT, THT, HTT u, so that P pE1q “ P pX “ 1q “ 3
8
.

2. E2 “ tω P Ω|Xpωq ą 2u “ tHHHu Ñ P pX ą 2q “ 1
8
.

3. E3 “ tω P Ω|1 ď Y pωq ď 2u “ tTTH, THT, HTT, THH, HTH, HHT u Ñ
P p1 ď Y ď 2q “ 6

8
“ 3

4
.

4. P ptω P Ω|3Xpωq ` 1 “ 7uq “ P ptω P Ω|3Xpωq “ 6uq “ P ptω P Ω|Xppωqq “ 2uq “
P ptTHH, HTH, HHT uq “ 3

8
. In an abbreviated and equivalent way:

P p3X ` 1 “ 7q “ P pX “ 2q “ 3
8
.

5. E5 “ tω P Ω|Y pωq2 “ 4u “ tω P Ω|Y pωq “ 2u “ tTTH, THT, HTT u, so that,
P ptω P Ω|Y pωq2 “ 4uq “ 3

8
. An abbreviated version of the expression is:

P pY 2 “ 4q “ P pY “ 2q “ 3
8
.
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Through the use of random variables, events can be viewed from a different perspective
in that they liberate us from the limitations of a natural language like English and make
the vast collection of mathematical tools relating to algebra and calculus ready for use. As
a result, the explanation of a phenomenon is only limited by our mathematical ingenuity.
Random variables, for example, bring meaning to quantum mechanics and statistical me-
chanics; they allow electrical engineers a way to study the source of noise and to remove it
from an electronic device; they allow economists to formulate models of the economy. By
associating data with random variables, a set of data can be firmly grasped; an analyst
can invoke the enormous store of mathematics and manipulate a set of data in ways to
probe its origins which could never be imagined possible with plain English.

Let us look at this experiment of flipping three fair coins as if we were looking at
statistical data. The random variable, X, maps each outcome to a number. There may be
more than one outcome which is mapped to the same number like the outcomes tTTHu,
tTHT u, and tTHT u which are each mapped to 1. By recording each mapping above each
value of X as is done in Figure 3, a picture which looks like a histogram emerges. The set

of values of X from mapping all the outcomes of the sample space is

"

0 1 1 1 2 2 2 3

*

.

It looks like a set of data; it looks like something which we should analyze; it beckons us
to calculate its mean, variance, and median. We, therefore, find that

µ “ 0 ` 1 ` 1 ` 1 ` 2 ` 2 ` 2 ` 3

8
“ 12

8
“ 3

2

σ2 “
p0 ´ 3

2
q2 ` p1 ´ 3

2
q2 ` p1 ´ 3

2
q2 ` p1 ´ 3

2
q2 ` p2 ´ 3

2
q2 ` p2 ´ 3

2
q2 ` p2 ´ 3

2
q2 ` p3 ´ 3

2
q2

8

“
3

4

and the median is 3
2
.
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The mean and median are not necessarily values of X. They are numbers that reflect
the center of mass of the possible values of X.

Let X count the number of heads occurring in the outcomes of flipping three fair coins.
It was deduced already that:

P pX “ 0q “ 1
8

P pX “ 1q “ 3
8

P pX “ 2q “ 3
8

P pX “ 3q “ 1
8

These fractions resemble the fractions which were used to calculate the mean, µ, of
the set of values of X. Pursuing this observation further, an algebraic manipulation of
µ “ 0`1`1`1`2`2`2`3

8
“ 3

2
transforms this expression of µ into one involving probabilities.

That is,

µ “ 1p0q ` 3p1q ` 3p2q ` 1p3q
8

“ 0p1
8

q ` 1p3
8

q ` 2p3
8

q ` 3p1
8

q

then substituting the fractions with the probabilities which are displayed above, µ can be
written as

µ “ 0P pX “ 0q ` 1P pX “ 1q ` 2P pX “ 2q ` 3P pX “ 3q
The random variable, X, produces a set of values which in a certain sense resembles data
from which a special mean denoted by ErXs can be obtained. Instead of using the term,
mean, for the center of mass of the distribution of values of a random variable as is done
for statistical data, the phrase, expected value, is the term used for the center of mass of a
random variable in the field of probability.

Definition 12. The expected value of a random variable, X, is defined to be:

ErXs “
ÿ

all possible
values of X

kP pX “ kq.

(The summation
ř

is taken over all possible values of X)

The mean and expected value convey the same connotation. The mean is the center of
mass of a set of data; the expected value is the center of mass of a random variable.

Let X be the number of heads in an outcome of flipping three fair coins, then:

ErXs “ 0P pX “ 0q`1P pX “ 1q`2P pX “ 2q`3P pX “ 3q “ 0p1
8

q`1p3
8

q`2p3
8

q`3p1
8

q “ 3

2

In the same vein of developing the notion of expected value along the lines of finding
the mean of a set of data, the variance of a random variable imitates the definition of the
population variance.
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Definition 13. The variance of a random variable, X, is defined to be:

varpXq “
ÿ

all possible
values of X

pk ´ ErXsq2P pX “ kq.

(The summation is taken over all possible values of X)

Let X be the number of heads in an outcome of flipping three fair coins. The variance
of X is:

varpXq “ p0 ´
3

2
q2P pX “ 0q ` p1 ´

3

2
q2P pX “ 1q ` p2 ´

3

2
q2P pX “ 2q ` p3 ´

3

2
q2P pX “ 3q

“ p
9

4
qp
1

8
q ` p

1

4
qp
3

8
q ` p

1

4
qp
3

8
q ` p

9

4
qp
1

8
q

“
24

32
“

3

4

A probability is defined by some specific characteristic of the phenomenon. In the case
of flipping a fair coin, the fundamental characteristic of the process is the property that
the coin is fair. If the coin is loaded, then a different probability is induced. In either case,
a random variable may have many different probabilities associated with it depending on
the nature of the phenomena. For a given phenomenon and for each value of X, there
is a probability. That complete collection of probabilities which are associated with the
random variable and induced by a specific phenomenon is given a special name.

Definition 14. The set of values tP pX “ 0q, P pX “ 1q, . . . , P pX “ nqu is called the
probability distribution or the probability mass function of the random variable X.

The great utility of a random variable lies in facilitating the precise description of an
event. The size of an event relative to the size of the sample space is a probability. Each
association of a random variable with a phenomenon induces a probability distribution;
hence when a random variable describes an event, it comes with a probability distribution.
The axioms of probability apply as well to random variables as to events. According to
the second axiom of probability, P pΩq “ 1. With that observation, the following theorem
is an immediate consequence.

Theorem 6.
ÿ

all possible
values of X

P pX “ kq “ 1

Proof. The events tω P Ω|Xpωq “ iu and tω P Ω|Xpωq “ ju are disjoint. For example,
it is logically impossible for an outcome to have exactly one head and exactly two heads
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at the same time. The meaning of the statement to be proved becomes clearer when it is
formally written in set notation. That is,

P pX “ 0q ` P pX “ 1q ` P pX “ 2q ` . . . ` P pX “ nq “
P ptω P Ω|Xpωq “ 0uq ` P ptω P Ω|Xpωq “ 1uq ` . . . ` P ptω P Ω|Xpωq “ nuq

Because the events are disjoint, we now invoke Theorem 1, in order to consolidate the sum
of probabilities into a probability of a union of disjoint events. Explicitly, the probability
of that union of events can be written as:

P ptω P Ω|Xpωq “ 0u Y tω P Ω|Xpωq “ 1u Y ¨ ¨ ¨ Y tω P Ω|Xpωq “ nuq

But the union of all possible events constitutes the sample space, Ω; therefore,

ÿ

all possible
values of X

P pX “ kq “ P pΩq “ 1

�

The sum of a probability distribution is always equal to 1. If the sum is not equal to
1, then the distribution is defective. It is always prudent to verify that a given probability
distribution produces a 1 when all of its terms are added together. It is especially prudent
to do so when solving a problem or deriving a customized statistical theory to explain a
new phenomenon.

There are two basic kinds of random variables: discrete and continuous.

Definition 15. If the random variable, X,

0 1 2 3

X

Ω

n

maps elements of Ω to a finite set of numbers, then X is called a discrete random

variable.

On the other hand, a random variable might have an infinite number of possible values
and that greatly complicates matters as the next definition suggests.

Definition 16. If the random variable, X,
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X

Ω

( )

maps elements of Ω to a set of intervals, then X is called a continuous random vari-

able.

There are special random variables which, though they have an infinitely denumerable
range like the Geometric distribution, are nonetheless classified as discrete random vari-
ables and appear to defy the meaning of discrete random variables. Very strange paradoxes
arise in any discussion of infinities. There are theorems which seem unbelievable such as
the proposition that there are an infinite number of infinities. In and among themselves,
the properties of infinity form a fascinating subject for study.

It is easier to define the meaning of a continuous random variable by giving specific
examples like temperature, length, time, weight, and voltage. These are attributes of things
belonging to the physical universe. Paradoxically, the universe is composed of atoms and
photons which are discrete entities about which energy and distance between and about
them are quantized. Strictly speaking then, there are no continuous random variables in
reality; they exist only in our imagination. Should we continue along this line of reasoning,
we will insensibly drift into a deep philosophical discussion. There are many intriguing
philosophical questions rooted in the natural sciences which are worth pondering, but it
will be better for us to circumvent this sort of problematic discussion and to follow our
innate intuition about the meaning of continuity and infinite things and let the physicists
and logicians resolve such inscrutable contradictions. By leaving that subject behind, we
are free to discuss the properties of probability distributions.

Besides the properties listed below which pertain to the discrete random variable, there
are analogous properties for distributions of continuous random variables as we will later
see.

Observations 1. 1. P pX “ iq ě 0.

2.
ř

all possible
values of X

P pX “ kq “ 1.

3. P pX ď kq “ P pX “ 0q ` P pX “ 1q ` . . . ` P pX “ k ´ 1q ` P pX “ kq.

4. P pX ą kq “ 1 ´ P pX ď kq.

5. P pX “ kq “ P pX ď kq ´ P pX ď k ´ 1q.
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Besides making a complete listing of the probabilities which are associated with a ran-
dom variable, in order to define a probability distribution, there is another and equivalent
way to characterize a probability distribution. It is done by means of listing the partial
sums of the probability mass function. These partial sums are known as the cumulative
distribution function.

Definition 17. The cumulative distribution function, F(c), is defined to be:

P pX ď cq “ F pcq “
c

ř

k“0

P pX “ kq, and it is abbreviated by cdf.

As was noted earlier, a random variable is defined on a sample space, and associated
with it there is a probability distribution perhaps among many others. A picture of a
probability distribution looks like a histogram. For example, when X is the sum of the
faces of two fair dice, it induces a probability distribution like the one shown below.
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What looks like a histogram is actually a probability distribution. Care must be ob-
served to distinguish a histogram and a probability distribution. A histogram of data
is to statistics what a probability distribution of a random variable is to probability. If
a probability distribution resembles a histogram, then we have established the desired
bridge between statistics and probability. That connection is the link which will allow us
to work backwards from the data to explain a characteristic of the population in a process
called inference. The objective of the statistician is to make a valid connection between
a probability distribution and a histogram of the data. The association of a probability
distribution with a histogram is an important source of controversy. The association is
often fraught with uncertainty and it requires meticulous substantiation otherwise no one
will believe that the association is valid. Once, if ever, the association is deemed valid,
then the job of the statistician is essentially finished.

Tabulated below are the results of an actual experiment in which two fair dice were
tossed five times. In the table, X represents the sum of the faces. A picture of the data
accompanies the data.
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Throw Outcome X

1 25 7
2 32 5
3 43 7
4 16 7
5 31 4

2 3 4 5 6 7 8 9 10 11 12

.

* * *
*
*

In comparison to the picture of the probability distribution which was shown earlier,
this histogram of the data remotely resembles the triangular shape of the probability
distribution of X. Suppose the dice were thrown 14 more times. The tabulation of all 19
casts is shown here in Table 1:

Table 1

Throw Outcome X Throw Outcome X Throw Outcome X

1 25 7 8 25 7 14 61 7
2 32 5 9 13 4 15 52 7
3 43 7 10 13 4 16 12 3
4 16 7 11 32 5 17 35 8
5 31 4 12 52 7 18 63 9
6 64 10 13 11 2 19 21 3
7 15 6

2 3 4 5 6 7 8 9 10 11 12

.

* * *
*
*

* * *
*
*

*
*
*

* * *
* *

*
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With additional points inserted into the histogram, the histogram begins to resemble the
triangular shape of the probability distribution. The histogram will never co-incide with
a probability distribution because one is derived from experimental data while the other
is an ideal. A natural question suggests itself by this illustration, namely, when should
the process of throwing the dice stop before the resemblance of the histogram with the
probability distribution is sufficiently convincing? The answer to that question is difficult
in practice to find, but a flavor of it will be given in the chapter on testing the hypothesis
for the goodness-of-fit.

6 Common Distributions

Discrete Random Variable Continuous Random Variable

Bernoulli Uniform
Uniform Normal
Binomial Student’s t
Multinomial X2

Triangle F
Geometric Gamma
Hypergeometric Exponential
Poisson Beta

Associated with every random variable, there is a probability distribution. Some prob-
ability distributions occur so often that they are given names. A list of the common
distributions is shown above.

7 Discrete Random Variables

7.1 Bernoulli

Only two outcomes characterize the Bernoulli distribution. The correct pronunciation of
Bernoulli puts the accent on the last syllable: Ber¨noul¨ĺı.

T

H

Ω

X

0 1

30



The sample space consists of two outcomes: pass-fail, head-tail, success-failure, on-off,
0-1. Let p be the probability of success, so that 1-p is the probability of failure. If X counts
the number of successes, then the possible values of X are 0 and 1. The event corresponding
to tω P Ω|Xpωq “ 1u is the event of getting a head, so that P(X=1)=p. Similarly, the
probability of getting a tail is P(X=0)=1-p=q. It is a common convention to denote 1-p
by q.

The formulas which we are about to derive for the expected value and the variance
of a Bernoulli random variable are specific only to the Bernoulli distribution and to no
other. The derivation begins in the same manner as with the derivation of expected value
and variance for any other distribution by beginning with the basic definitions of expected
value and variance. From the definition of expected value we may write:

ErXs “
1

ÿ

k“0

kP pX “ kq “ 0P pX “ 0q ` 1P pX “ 1q “ p

and similarly

varpXq “
1

ÿ

k“0

pk ´ ErXsq2P pX “ kq “ p0 ´ pq2P pX “ 0q ` p1 ´ pq2P pX “ 1q

“ p2p1 ´ pq ` p1 ´ pq2p “ pp1 ´ pqpp ` 1 ´ pq “ pp1 ´ pq
“ pq

There is no need anymore to calculate ErXs and varpXq for a Bernoulli random variable.
It is sufficient to recognize that the random variable under consideration is associated with
two and only two outcomes then one may use the formulas shown below for computing
the expected value and the variance.

Bernoulli b(1,p)

ErXs “ p

varpXq “ pq

Example 14. A question on a multiple choice examination has five possible answers,
one of which is correct. What is the probability that a student who merely guesses will
choose the correct answer? ANS: Ω “ tC, Iu where C is correct and I is incorrect.

Let Xpωq “
"

1 if ω is correct
0 otherwise
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The assumption that the student guesses implies equally likely outcomes as in drawing
a white ball out of an urn of five balls, one of which is white and the others red; therefore,
the probability of success is P ptω P Ω|Xpωq “ 1uq “ 1

5
.

Find ErXs and varpXq. ANS: X is a Bernoulli random variable; therefore, ErXs “
p “ 1

5
and varpXq “ pq “ 1

5
4
5

“ 4
25
.

7.2 Uniform

The Uniform distribution is characterized by the fact that for all values of the random
variable, X, the probabilities are the same. A precise description is the following. A random
variable, X, is distributed as a discrete Uniform distribution if P pX “ kq “ 1

n
for every

value of X. For example, the sample space of tossing one fair die consists of six outcomes.
If the random variable, X, gives the number on the face of the die, then the sample space
of six outcomes is mapped to six possible values of X as portrayed in the accompanying
figure.

* * * * **

Ω

X

1 2 3

4 5 6
1 2 3 4 5 6

Having stated that the die is fair, the probability distribution of X is simply,

P pX “ 1q “ P pX “ 2q “ P pX “ 3q “ P pX “ 4q “ P pX “ 5q “ P pX “ 6q “ 1

6

.
The discrete Uniform distribution occurs in so many varieties that attempts to derive

a general formula for the expected value and the variance are not too helpful. In the
special case, however, in which the possible values of X are consecutive from 1 to n then,
P pX “ kq “ 1

n
for k “ 1, 2, 3, . . . , n. By the definition of expected value, ErXs “

n
ř

k“1

kP pX “ kq “ 1p 1
n

q ` 2p 1
n

q ` . . . ` np 1
n

q “ 1`2` ... `n
n

“ n`1
2
.

The derivation of the formula for the variance in this special case of consecutive values
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of X begins as usual with the definition of variance.

varpXq “
n

ÿ

k“1

pk ´ n ` 1

2
q2P pX “ kq “

ˆ

ÿ

k2 ´ 2
pn ` 1q

2

ÿ

k ` pn ` 1q2
4

˙

1

n

“
ř

k2

n
´ pn ` 1q2

4
“ npn ` 1qp2n ` 1q

n6
´ pn ` 1q2

4

“ pn ´ 1qpn ` 1q
12

Example 15. In casting one fair die, n=6, and the possible values of X are consecutive

from 1 to 6. ErXs “ n`1
2

“ 7
2
and varpXq “ pn´1qpn`1q

12
“ 35

12
. If the values of X had not

been consecutive, then it would have been necessary to resort to the basic definitions of
expected value and variance to calculate them.

Usually, one resorts to the definitions of expected value and variance to find the nu-
merical values for the Uniform distribution but in a slightly more generalized version of
the special case discussed above for k “ 1, 2, 3, . . . , n is the one where k starts at a
and sequentially goes to b. For this Discrete Uniform distribution, P pX “ kq “ 1

b´a`1
,

ErXs “ a`b
2

and varpXq “ pb´aqpb´a`2q
12

. If the parameter, a, were set to 1 and b set to n,
then these last formulas collapse to the ones cited above.

Discrete Uniform (a,b)

ErXs “ a`b
2

varpXq “ pb´aqpb´a`2q
12

7.3 Binomial

Flipping three coins generates eight possible outcomes. A flip of a coin is referred to as
a trial. This experiment of flipping three coins involves three trials for which each trial
has two possibilities: either a head or a tail. Three trials, each providing two possibilities,
produce a total of 23 “ 8 outcomes to constitute the sample space. In general, if an
experiment involves n independent trials for which each trial has two possible outcomes,
then a random variable defined on this resulting sample space is called a Binomial random
variable. The Binomial distribution is characterized by n independent trials for which each
trial has two outcomes. A schematic diagram of the sample space being mapped by X and
the induced probability distribution for a fair process appears below.
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The probability that a Binomial random variable equals k is given by formula (1). This
formula is applicable to any Binomial random variable which is associated with n trials
such that the probability of obtaining a success on any trial is p.

P pX “ kq “
ˆ

n

k

˙

pkp1 ´ pqn´k for k “ 0, 1, 2, . . . , n (1)

A random variable which follows a Binomial distribution is denoted by X „ bpn, pq.
The symbol , „, is translated in English as “is distributed as”. A random variable, X,
which is distributed as a Binomial distribution with 3 trials and a probability of success,
1
2
, would be written as: X „ bp3, 1

2
q.

The Binomial and Bernoulli distributions are related. In fact, the Bernoulli distribution
is a special case of the Binomial distribution. A Bernoulli random variable, X, is charac-
terized by having one trial with a probability of success, p. In other words, X „ bp1, pq.
From another perspective, the Binomial random variable, X „ bpn, pq, is the composition
of a sum of n independent Bernoulli random variables. The Bernoulli random variable is
the simplest of the discrete random variables, and individual elements of a collection of
Bernoulli random variables are often used in clever ways to build more complicated distri-
butions like the Binomial distribution. If there exists such a distribution like the Binomial
distribution, then there ought to be something like a Trinomial distribution which would
be characterized by n trials with three outcomes per trial, or a Quadnomial distribution
for which there would be four outcomes per trial, or a Quintnomial distribution with five
outcomes per trial, and so on. All of these generalized versions of the Binomial distribution
collectively come under the name, Multinomial distribution.

7.4 Mathematical Interlude on Counting

Suppose five coins are tossed. One outcome might be THTTH. Let X be that random
variable which counts the number of heads in an outcome, then X({THTTH})=2. But
there are other outcomes having two heads like HHTTT. A natural question to ask is:
how many outcomes have two heads? By enumerating all possible outcomes which have
two heads, the answer is 10. After performing many such enumerations, a pattern emerges
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which suggests a rule for counting all combinations of k heads from n coins. Under this
rule, the enumeration is easy and transparent.

The science of counting is called combinatorics. It is a branch of mathematics which is
surprisingly challenging but which produces remarkably useful results. A basic unit in the
study of combinatorics is the permutation. A permutation of a list of letters is simply a
rearrangement of them. For example, the three letters, abc, can be permuted in six ways
as illustrated below:

abc Ñ acb Ñ cab Ñ cba Ñ bca Ñ bac

The permutations of these three letters occur 3 ˆ 2 ˆ 1 “ 6 ways. The first slot in the list
may be filled with any one of three letters, but once a letter is picked to fill the first slot,
there are only two candidates left to fill the second slot. When both the first and second
slots are fill, there is only one possibility left to fill the third slot. With that reasoning,
the number of permutations can be calculated. For example, four letters can be permuted
in 4 ˆ 3 ˆ 2 ˆ 1 “ 24 ways. The multiplication of a consecutive sequence of numbers in
descending order occurs so often in combinatorics that it is given a name.

Definition 18. n! “ npn ´ 1qpn ´ 2q ¨ ¨ ¨ p2qp1q. n! is called n factorial.

Example 16. 1. 3! “ 3 ˆ 2 ˆ 1 “ 6

2. 4! “ 4 ˆ 3 ˆ 2 ˆ 1 “ 24

3. 5! “ 5 ˆ 4 ˆ 3 ˆ 2 ˆ 1 “ 120

4. 52! “ 8 ˆ 1067

In the last example, 52! is the number of permutations of a list of 52 letters or 52 cards
in a standard poker deck. It is a simple task by means of a hand calculator to calculate
that 52! “ 8ˆ 1067. 52! is a huge number. The image of a string of pearls will demonstrate
what huge means in this context. A substitution of the smallest atom for each pearl while
leaving no space between them may not produce a necklace as attractive as a string of
pearls, but this string of 52! hydrogen atoms will more than encircle the known universe.

In the process of permuting objects, the order of the objects must be considered, but,
when the order is irrelevant, the number of combinations of choosing k objects from a total
of n objects is

`

n

k

˘

.

Definition 19. Let
`

n

k

˘

denote the number of subsets of size k that can be made from
a set of size n. We say, “n choose k” for

`

n

k

˘

.

Example 17. Let A “ ta, b, c, du
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1. The number of subsets of size 1 which can be created from A is 4. These four subsets
are: tau, tbu, tcu, tdu; therefore,

`

4

1

˘

“ 4.

2. The only subsets of A which consist of two elements are:

tabu, tacu, tadu, tbcu, tbdu, tcdu

therefore,
`

4

2

˘

“ 6.

3. These four subsets, tbcdu, tacdu, tabdu, tabcu imply that
`

4

3

˘

“ 4 which should also

be equal to
`

4

1

˘

because the subsets, tbcdu, tacdu, tabdu, tabcu are the complements
of tau, tbu, tcu, tdu.

4. The set, A, is a subset of itself; therefore,
`

4

4

˘

“ 1.

5. What is
`

4

0

˘

? The empty set, tu “ H, is a subset of every set including the set, A;

therefore
`

4

0

˘

“ 1.

From the experience of working with enough examples of counting combinations in
terms of permuting objects, a simple formula emerges.

Theorem 7.
`

n

k

˘

“ n!
pn´kq!k!

A simple device know as Pascal’s Triangle is useful for calculating small values of
`

n

k

˘

.
Rows correspond to n and the position within a row corresponds to k. The rows and
positions are counted starting with 0. For example,

`

4

2

˘

“ 6.

Pascal’s Triangle

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

The binomial coefficient,
`

n

k

˘

, plays a prominent role in the formula for calculating the
probabilities of a Binomial distribution. It is a symbol that occurs frequently in mathemat-
ics, and its origins lie in the expansion of the binomial, x+y, raised to the nth power. The
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binomial formula comes from elementary algebra and is written as: px`yqn “
n
ř

i“0

`

n

k

˘

xiyn´i.

If x and y are both set to 1, then 2n “
n
ř

i“0

`

n

k

˘

, but
n
ř

i“0

`

n

k

˘

is the sum of the number of

all subsets of size k taken from a set of size n. From the binomial formula, therefore, it is
deduced that the total number of possible subsets, in other words, the size of the power
set is 2n.

Another mathematician, however, might take a different approach to arrive at the same
conclusion. He might argue that we know from our discussions of flipping n distinguishable
coins that the sample space consists of 2n outcomes. There are two possibilities that may
be assigned to each of the n slots in an outcome: either a head or a tail. Hence there are
2 ˆ 2 ˆ ¨ ¨ ¨ ˆ 2 “ 2n possible outcomes. Each coin in a string of n coins occurs either with
a head or by a tail. Each string of heads and tails correspond to a subset of the sample
space, Ω. With this reasoning, the sample space of flipping n coins can be interpreted
as a collection of listings of all possible subsets of a set of n things. In other words, the
sample space which has a size of 2n is in one-to-one correspondence with the power set of
n objects; therefore, the size of the power set must be 2n. But the size of the power set is
n
ř

i“0

`

n

k

˘

; therefore,
n
ř

i“0

`

n

k

˘

“ 2n.

Two different arguments produce the same equation. The former argument may be
called the analytical argument whereas the second argument could be called the intuitive or
abstract argument. Both arrive at the same conclusion. Sometimes the analytical approach
is the only feasible approach in solving a problem; sometimes the abstract approach is
the only feasible approach. Many times both are feasible with the consequence that some
remarkable equivalences involving very complicated formulas are produced. One formula
will come from an analytical demonstration and another formula will come from abstract
reasoning. When both arguments produce the same valid conclusion, the formulas must
be equal. This use of playing one argument against another gives a flavor of the kind of
clever techniques which are used in the study of combinatorics.

7.5 Return to Binomial Distribution

If X „ bpn, pq, then it has an expected value and a variance. Its expected value is derived

directly from the definition: ErXs “
n
ř

k“0

k
`

n

k

˘

pkp1 ´ pqn´k “ np. This simple answer is all

the more remarkable when viewed in the light of the lengthy algebraic manipulations which
will not be shown but are required to produce that result. A much greater mathematical
challenge is presented by the derivation of the variance. A direct algebraic reduction of the
formula for the variance from the basic definition of the variance is usually too challenging
to present in an introductory course of probability until the topic of moment generating
functions has been adequately discussed. At that time, the formula for the variance with
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the aid of calculus is easily derived and is given by varpXq “
n
ř

k“0

pk´npq2
`

n

k

˘

pkp1´pqn´k “
npp1 ´ pq “ npq.

Binomial b(n,p)

ErXs “ np

varpXq “ npq

8 Computations Using Probability Distributions

Computations for discrete random variables rely on the properties listed on page 27.

Example 18. Let X be a Bernoulli random variable such that X=1 with p=.2 and X=0
with 1-p=.8; that is X „ bp1, .2q.

Without looking at the definition of expected value but instead using the formula of
expected value, ErXs “ p “ .2. Likewise, from the formula for the variance of a Bernoulli
random variable, varpXq “ pq “ pp1 ´ pq “ .16 and the standard deviation is std “?
.16 “ .4.

Example 19. Let Y=1, 2, 3, 4, 5 be a random variable that follows a Uniform distri-
bution. Since Y is distributed as a Uniform distribution, then P pY “ kq “ 1

5
for k=0, 1,

2, 3, 4, and 5.

1. P pY ď 2q “ P pY “ 1q ` P pY “ 2q “ 1
5

` 1
5

“ 2
5
.

2. Resorting to the definition of expected value: ErY s “ 1p1
5
q`2p1

5
q`3p1

5
q`4p1

5
q`5p1

5
q “

3. Or by recognizing that within our midst there is the Discrete Uniform random
variable having consecutive values from 1 to 5, so that ErY s “ 1`5

2
“ 3.

3. For the variance: varpY q “ p1´3q2 1
5

`p2´3q2 1
5

`p3´3q2 1
5

`p4´3q2 1
5

`p5´3q2 1
5

“ 2.

Or varpY q “ p5´1qp5´1`2q
12

“ 2.

Example 20. Let Z „ bp7, .6q. From the formula for the probability of a Binomial
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distribution:

P pZ “ 0q “
ˆ

7

0

˙

.60p.4q7´0 “ 1p.4q7 “ .00164

...

P pZ “ 5q “
ˆ

7

5

˙

.65p.4q2 “ 21p.07776qp.16q “ .26127

P pZ “ 6q “
ˆ

7

6

˙

.66p.4q1 “ 7p.046656qp.4q “ .13064

P pZ “ 7q “
ˆ

7

7

˙

.67p.4q0 “ 1p.02799q “ .02799

1. P pZ ą 5q “ P pZ “ 6q ` P pZ “ 7q “ .13064 ` .02799 “ .15863.

2. P pZ ď 5q “ 1 ´ P pZ ą 5q “ 1 ´ .15863 “ .84137. The direct way produces the same
result:

P pZ ď 5q “ P pZ “ 0q`P pZ “ 1q`P pZ “ 2q`P pZ “ 3q`P pZ “ 4q`P pZ “ 5q “ .84137

3. P pZ ď 4q “ P pZ “ 0q ` P pZ “ 1q ` P pZ “ 2q ` P pZ “ 3q ` P pZ “ 4q “ .58010.

Let us find P pZ “ 5q in another way. Invoking the property, P pX “ kq “ P pX ď
kq ´ P pX ď k ´ 1q found on page 27, P pZ “ 5q “ P pZ ď 5q ´ P pZ ď 4q “
.84137 ´ .58010 “ .26127 which is the same number gotten above.

4. The expected value is: ErZs “ np “ 7p.6q “ 4.2.

5. And the variance is: varpZq “ npq “ 7p.6qp.4q “ 1.68.

That important property, P pX “ kq “ P pX ď kq ´ P pX ď k ´ 1q, will be used
to solve the next problem. Although the random variable Z „ bp7, .6q is rather simple,
the Binomial distribution can often lead to formidable computations. Binomial random
variables for n up to 10 can be accommodated by Pascal’s Triangle and a hand calculator.
More extensive computational resources need to be found for n greater than 10. Tables of
the Binomial cumulative distribution exist to handle such situations.

Problem 3. Find P pT “ 6q for T „ bp15, .3q.
We need to refer to the Binomial table for n=15. From the table, it is seen that P pT ď

6q “ .869 and P pT ď 5q “ .722, so that P pT “ 6q “ P pT ď 6q ´ P pT ď 5q “ .147.
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9 Continuous Random Variables

9.1 Uniform Upa, bq
The best way to describe the Uniform distribution for the continuous random variable is
with a picture of its probability density function as shown here.

b−a
1

a bc

The area under the curve of any probability density function is always one. The Uniform
distribution is no exception. The area under it must be equal to one; therefore, the area
of the rectangle seen in the probability density function must be equal to one, that is:
pb ´ aq 1

b´a
“ 1.

As in the discrete case where the sum of the probabilities is
ř

k

P pX “ kq “ 1, in the

continuous case, the area under the curve is 1. Because continuous random variables involve
intervals and not discrete ranges, the study of continuous random variables falls into the
realm of infinities or continua. As a consequence, the area under the probability density
function replaces the summation of probabilities. That change in focus from calculating the
sum of probabilities to the calculation of areas under a curve depends on the principles of
integral calculus. On account of continuous random variables, the mathematics of statistics
becomes very sophisticated very quickly. However, since the Uniform distribution is so
simple, the analysis of it can be done without resorting to calculus.

Definition 20. If X „ Upa, bq, then

P pX ď cq “

$

&

%

0 if c ď a
c´a
b´a

if a ď c ď b

1 if c ě b

It is not necessary to memorize formulas like this one because it is better to rely on
pictures which depict the essence of the situation. It is obvious, for instance, by looking
at the picture of the probability density function for a Uniform distribution that the area
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under a point is zero. This fact marks one of the significant differences between discrete and
continuous random variables. If a random variable, Y, is continuous, then P pY “ cq “ 0
for any c. Whereas, if X is a discrete random variable like the discrete Uniform random
variable, then P pX “ kq “ 1{n ‰ 0.

If X „ Upa, bq, then it has an expected value and a variance. The expected value and
the variance of X are obtained by means of integral calculus. The respective formulas are:

ErXs “ a`b
2

and varpXq “ pb´aq2
12

. In the special case when X „ Up0, 1q, ErXs “ 1
2
and

varpXq “ 1
12
.

Uniform U(a,b)

ErXs “ a`b
2

varpXq “ pb´aq2
12

Example 21. Suppose W „ Up3, 7q. The first step in addressing a random variable is
to draw a picture of its distribution. The height of the rectangle must be the reciprocal of
its length because the area under the curve must be one.

4
1

3 54 6 7

Having drawn a picture, the following probabilities are easy to deduce.

1. P pW ď 2q “ 0

2. P pW ď 5q “ 2p1
4
q “ 1

2

3. P pW ą 6q “ 1
4

4. P p4 ď W ď 6q “ 1
2

5. ErW s “ 3`7
2

“ 5
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6. varpW q “ p7´3q2
12

“ 16
12

“ 4
3

7. Find c such that P pW ď cq “ .6 The answer is: c=5.4

9.2 Mathematical Interlude

Associated with a continuous random variable is a probability density function. In the
discrete case, it is called the probability mass function. For a continuous random variable,
it is called the probability density function.

Definition 21. Denote the probability density function, pdf, as f(x).

Henri Lebesgue
1875-1941

Felix Edouard Justin Emile
Borel

1871-1956

Discrete and continuous random variables are different. It is easy to understand the de-
velopment of a discrete random variable, but that is not the case with continuous random
variables. It was not until the 1930’s when theoretical advances made by Henri Lebesgue
augmented the work of Emile Borel that mathematicians finally got a firm grasp on the
interpretation of continuous random variables. Then both discrete and random variables
came under the same mathematical discipline known as measure theory. A probability
as we already know is the relative measure of an event to the sample space. Because the
continuous random variables involve infinitisimals and expressions extending to infinity,
the use of integral calculus is unavoidable. However, close parallels between discrete and
continuous random variable do exist like those given in Table 2, so that the method for
computing probabilities of continuous random variables follows along the same line of
reasoning as in the procedure for the discrete case except we will extensively use tables
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Table 2

For Discrete Random Variable For Continuous Random Variable

CDF P pX ď cq=
ř

over all

values of Xďc

P pX “ kq P pX ď cq=
c
ş

´8

fptqdt

Expected
Value

ErXs=
ř

over all
values of X

kP pX “ kq ErXs=
8
ş

´8

tfptqdt

Variance varpXq=
ř

over all
values of X

pk ´ ErXsq2P pX “ kq varpXq=
8
ş

´8

pt ´ ErXsq2fptqdt

in lieu of calculus. Underlying these tables is a massive foundation of technically diffi-
cult numerical methods which rely not surprisingly on a solid understanding of advanced
calculus.

9.3 Normal Distribution Npµ, σ2q
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The Uniform distribution is the simplest distribution among those for a continuous random
variable, but it is not the easiest one to work with. Ironically, the Normal distribution
defined by an intimidating formula of its probability density function is the nicest of all
distributions. The Normal distribution was coined by Jules Henri Poincare, but it is often
referred to as the Gaussian distribution by engineers and scientists in honor of Friedrich
Gauss who invented the Normal distribution for his newly developed method of least
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squares, a numerical technique which will be discussed in detail later during our study of
linear models.

The equation of the probability density function (pdf) of the Normal distribution,

Npµ, σ2q, is: fpxq “ 1?
2πσ

e´ px´µq2

2σ2 . The graph of two Normal pdf’s are shown in the figure
above. Both of them have the same value of µ which is 300. This parameter determines
the location of the distribution. The Normal distribution is symmetrical about the mean;
therefore, µ is the center of mass of the Normal distribution. The other parameter, σ2,
determines the shape of the distribution. The larger σ2 is, the flatter the shape of the
Normal distribution. The dashed curve represents a Np300, 10000q while the curve with
the solid line represents a Np300, 625q.

The symmetry, graceful curvature, and unique shape which our eyes immediately per-
ceive reveal some of the seemingly boundless secrets of the Normal distribution. Francis
Galton, a early pioneer of modern statistics, wrote a eloquent description of the Normal
Distribution in chapter V of his book, Natural Inheritence, published in 1889:

Order in Apparent Chaos. - I know of scarcely anything so apt to impress the
imagination as the wonderful form of cosmic order expressed by the “ Law of
Frequency of Error.” The law would have been personified by the Greeks and
deified, if they had known of it. It reigns with serenity and in complete self-
effacement amidst the wildest confusion. The huger the mob, and the greater
the apparent anarchy, the more perfect is its sway. It is the supreme law of
Unreason. Whenever a large sample of chaotic elements are taken in hand
and marshalled in the order of their magnitude, an unsuspected and most
beautiful form of regularity proves to have been latent all along. The tops
of the marshalled row form a flowing curve of invariable proportions ; and
each element, as it is sorted into place, finds, as it were, a pre-ordained niche,
accurately adapted to fit it. If the measurement at any two specified Grades
in the row are known, those that will be found at every other Grade, except
towards the extreme, ends, can be predicted in the way already explained, and
with much precision,

While our intellect is immediately drawn to the equation of the Normal distribution,
we notice that its exponent is raised to an exponent. As curious as that might be, we
cannot help but notice the presence of two peculiar numbers in an enigmatic relationship.

The history of π makes it the most famous of all the mathematical constants. A fasci-
nating account of π appears in the book, A History of π, written by Petr Beckmann, a man
who fled Czechoslovakia in 1968 and settled in the United States. An electrical engineer
by profession, Beckmann’s story of π nicely describes the relation of π with the history of
mathematics. By definition, π is the ratio of the circumference of a circle to its diameter,
that is: π “ C

D
“ 3.141592653 . . .. A precise decimal approximation of π essentially eluded
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mathematicians until the advent of numerical methods which were made possible by the
invention of calculus.

Every year seems to bring news of the discovery of many more digits in the decimal
expansion of π which reached 12,100,000,000,050 digits on 28 December 2013 1 . In spite
of the amazing pursuit of finding ever more digits, no discernible pattern in the digits has
been found. Every civilization knew of π, but it was Greek geometry which addressed π

theoretically by none other than Archimedes who first proved that the area of a circle is:
πr2. His crowning achievement and the one which he insisted be inscribed on his grave
marker symbolically by a sphere and right cylinder was the discovery that the volume of
a sphere is: 4

3
πr3. Who knows, had he not been slain by a Roman soldier, Archimedes

might have discovered calculus 1,800 years before Newton. The universal fame of this
fundamental constant of mathematics which we call π never diminishes.

Johann Carl Friedrich Gauss
1777-1855

Leonhard Euler
1707-1783

Another fundamental constant is e “ 2.718281828 . . .. Its origins lie in differential
calculus where it was discovered and named by Leonhard Euler. One by one, as functions
succumbed to the ambitions of mathematicians to differentiate them in the early days of
calculus, the trigonometric functions and the logarithmic function were the simplest non-
algebraic functions to receive attention and were conquered by the great mathematicians.
In the process of differentiating the logarithmic function, d logapxq

dx
“ logapeq

x
, Euler found the

constant e to be lim
nÑ8

p1 ` 1
n

qn. It is much easier to find the decimal expansion of e than

that of π. In many ways, e is a nice number, unlike the stubborn π, though it is π which
for some inscrutable reason enjoys general fascination. Yet, like π, e appears everywhere
in mathematics.

What is truly remarkable is that the number π which originates in geometry and the

1See: http://en.wikipedia.org/wiki/Chronology of computation of π
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number e which originates in calculus should come sublimely together in probability in
the equation of the Normal distribution without any discernible reason. Why of all places
should such a meeting of two basic constants even occur is a question which drives mathe-
maticians to marvel at the beauty of mathematics. It incites them to ponder the perennial
question: What constitutes a mathematical discovery? Do things like the Normal distri-
bution exist ever since the creation of the universe waiting to be discovered by someone or
are mathematical discoveries only a figment of man’s imagination? The Normal distribu-
tion is indeed fundamental. It is the bread and butter of the statistician. Almost nothing
of general practical importance in statistics does not depend on or cannot be expressed
in terms of or approximated to any degree by the Normal distribution. Its meaning runs
deep; its importance is unsurpassed.

The notation which is used to identify a Normal distribution is: Npµ, σ2q. That the
two parameters, µ and σ2, are used to characterize the Normal distribution and, also, to
denote the population mean and population variance is not merely co-incidental. We will
soon see that a clever use of the Normal distribution will make it possible to describe
almost any set of experimental data.

If X „ Npµ, σ2q, then X has an expected value and a variance. By means of the
definition of the expected value for a continuous random variable as shown in Table 2 and
the non-trivial application of the rules of advanced calculus, ErXs “ µ and for the variance,
varpXq “ σ2. That is, E[X] and var(X) in the world of probability appear to correspond to
the population mean and population variance in the world of statistics. Indeed, one may
judge the resemblance of a histogram and a probability distribution not only by looking
at them, but one can test analytically whether the probability distribution adequately
agrees with a histogram. If the center of mass of a random variable, ErXs, agrees with
the center of mass, µ, of a population according to some specified criterion, then a bridge
will have been made between the theory of probability and the data of statistics. In that
case, the association of a probability distribution with a histogram of the data will be
deemed defensible, and the job of the statistician who is hired to analyze the problem will
essentially come to an end.

Normal N(µ,σ2)

ErXs “ µ

varpXq “ σ2

Two important properties of the Normal distribution are:

1. If X „ Npµ, σ2q, then aX ` b „ Npaµ ` b, a2σ2q for the two arbitrary constants, a
and b. In particular, let a “ 1

σ
and b “ ´µ

σ
, then aX`b “ X´µ

σ
; moreover, aµ`b “ 0,

and a2σ2 “ 1, hence X´µ

σ
„ Np0, 1q.
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2. A set of independent Normal random variables can be used to approximate other
random variables.

Definition 22. X´µ

σ
is called the population z-score of X.

Definition 23. xi´x̄
s

is called the sample z-score of xi.

Both z-scores are examples of scaling. There are an infinite number of possible Normal
distributions, but all Normal random variables can be transformed into the Standard
Normal distribution, Np0, 1q by means of the z-score, and it suffices, therefore, to have
only one table for the Normal distribution like the one given in Appendix 12.

10 Computations Using Continuous Random Vari-

ables

−3 −2 −1 0 1 2 3

 

 

|
z

Let X „ Np0, 1q. A picture of this distribution will prove to be an invaluable aid in solving
problems.

Observations 2. • The area under the curve is 1.

• The area from ´8 to 0 is 1/2 which implies that P pX ă 0q “ .5.

• Obviously, P pX ď zq ` P pX ą zq “ 1; therefore, P pX ą zq “ 1 ´ P pX ď zq.

• By symmetry, P pX ď ´zq “ P pX ě zq.

• Recall that P pX “ zq “ 0 for any z, because X is a continuous random variable.
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Other than trivial problems, numerical methods are necessary for producing decimal
numbers of a probability. As it is always possible to transform X „ Npµ, σ2q into a Np0, 1q
by means of a z-score, only one table is sufficient to find probabilities for the Normal
distribution. The table is constructed to provide the area under the probability density
function between 0 and z; therefore, the area to the left of 0 needs to be considered by
adding .5 when it is appropriate. These ideas will be made clear by the following example.

Example 22. Given that X „ Np0, 1q:
1. P pX ă .1q “ .5 ` .0398 “ .5398

2. P pX ď 1q “ .5 ` .3413 “ .8413

3. P pX ě 1.5q “ 1 ´ P pX ă 1.5q “ 1 ´ p.5 ` .4332q “ .0668

4. P pX ď ´.5q “ P pX ě .5q “ 1 ´ P pX ď .5q “ 1 ´ p.5 ` .1915q “ .3085

Example 23. Suppose Y „ Np6, 2.25q. Immediately, we know that the mean is µ “ 6
and the variance is σ2 “ 2.25, i.e. σ “ 1.5; therefore, the necessary ingredients to find the
z-score are readily available. What is P pY ď 4q?

P pY ď 4q “ P pY ´ 6 ď 4 ´ 6q

“ P

ˆ

Y ´ 6

1.5
ď 4 ´ 6

1.5

˙

“ P pz ď ´1.333q

But the table of probabilities provided in Appendix 12 does not provide probabilities for
negative values of z. However, the area under the curve up to -1.33 is the same area to the
right of 1.33 in accordance with our earlier observations of the symmetry of the Normal
distribution which implies that P pX ď ´zq “ P pX ě zq.

 
−1.33

 
1.33
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P pY ď 4q “ P pz ď ´1.333q
“ P pZ ě 1.333q “ 1 ´ P pZ ď 1.3333q “ 1 ´ p.5 ` .4082q
“ .0918

The converse of finding a probability is to find a z which produces a specified proba-
bility.

Example 24. Find x0 such that P pX ď x0q “ .8 when X „ Np0, 1q. To help correlate
x0 and .8 with a z-score, we will use the notation, z.2. Both numbers, x0 and z.2, are the
same. z.2 gives the connotation of a z-score such that the area to the right of it is .2 or
equivalently the area to the left of it is .8 as depicted in the following picture.

−4 −2 0 2 4
 

z.2

.3.5

The picture says that P pX ď z.2q “ .8 “ .5 ` .3. That number, z.2, which produces
an area under the curve of .3 between 0 and itself corresponds to that z in the table of
probabilities which gives a value of .30000 in the body of the table. Although there is no
such number in the body of the table as .3000 the number that comes closest to it is used
instead. That number in the body of the table is .29955, and it corresponds to a z of .84.
In conclusion, x0 “ z.2 “ .84. It is always prudent to check one’s answer. To that end,
P pX ď .84q “ .29955; the answer is, therefore, correct.

11 Sampling Distributions

Question 1. Which of the following, if any, are random variables?

µ “
ř

iPP
xi

N
, x̄ “

ř

iPS
xi

n
, σ2 “

ř

iPP
pxi´µq2

N
, or s2 “

ř

iPS
pxi´x̄q2

n´1
.

A random variable maps an outcome of a sample space to a number. In the case of
µ and σ2, the sample space consists of only one outcome namely, P. In a sense, µ and
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σ2 are degenerate random variables; they are constants. On the other hand, x̄ and s2 are
different for each draw of a sample. The sample space for them consists of every possible
sampling of elements of P. For each sample, x̄ maps it to a number and s2 maps the sample
to another number. Both x̄ and s2 are random variables. The schematic diagram shown
below illustrates the mapping of x̄ and s2 from the same outcomes to different numbers.

0 1 n...

0 1 n...

S2

Ω

X

Not only are x̄ and s2 random variables, but any mapping of a sample to a number is
a random variable like the sample median or the sample 1st quartile or the sample range.
Associated with a random variable is a probability distribution. There is one for x̄ and
a different one for s2. The probability distribution which is associated with a sampling
random variable is something called a sampling distribution simply, in order to emphasize
its association with a sample.

To illustrate the concept of a sampling distribution, consider the sample space of out-
comes in which an outcome consists of a triple. Any place in the triple can be filled with
either a 0, 3, or a 12. As such, the sample space is:

Ω “

$

’

’

’

’

’

’

’

’
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p0, 0 ,12q p3, 0 ,12q p12, 0 ,12q
p0, 3 , 0 q p3, 3 , 0 q p12, 3 , 0 q
p0, 3 , 3 q p3, 3 , 3 q p12, 3 , 3 q
p0, 3 ,12q p3, 3 ,12q p12, 3 ,12q
p0,12, 0 q p3,12, 0 q p12,12, 0 q
p0,12, 3 q p3,12, 3 q p12,12, 3 q
p0,12,12q p3,12,12q p12,12,12q
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/
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Define x̄ “ a`b`c
3

where a, b, and c are the places in any triple (a,b,c). x̄ maps an

outcome to the average of its three members. Define s2 “ pa´x̄q2`pb´x̄q2`pc´x̄q2
2

, and the
median as the median of a, b, and c. Each random variable has a set of possible values.
For x̄, the possible values are: t0, 1, 2, 3, 4, 5, 6, 8, 9, 12u; for s2, the possible values
are: t0, 2, 3, 27, 39, 48u; for the median, the possible values are: t0, 3, 12u. Associated
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with each of these three random variables is a probability distribution; they are shown in
the accompanying diagram. None of the distributions is a common distribution which we
know by a name, nevertheless, the diagram tells us everything we need to know about the
distributions of x̄, s2, and the median. From the diagram, for instance, it is can be seen
that P px̄ “ 4q “ 3

27
. Similarly, P pmedian “ 3q “ 13

27
and P ps2 “ 27q “ 6

27
. It is clear that

the sample mean, sample variance, and the sample median are random variables and that
they each have a different probability distribution.

.

.

.

.

.

(0,0,0)

(a,b,c)

.
(12,12,12)

a+b+c _
x=

3
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*
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*

*
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0 3 12

13/27 7/277/27

median(a,b,c)

Ω

s

0 2 3 27 39 48

3/27 4/27 2/27 6/27 6/276/27

1/27

0 1 129865432

1/27
3/27

3/27
3/27

6/27
3/27

1/27
3/27

3/27

Consider the random variable, x̄. It has an expected value and a variance, that is:

Erx̄s “ 0p 1

27
q ` 1p 3

27
q ` ¨ ¨ ¨ ` 9p 3

27
q ` 12p 1

27
q “ 5

and

varpx̄q “ p0 ´ 5q2 1

27
` ¨ ¨ ¨ ` p12 ´ 5q2p 1

27
q “ 78

9
On a different tack, it is enlightening to examine these probability distributions from

another perspective in which each is explained by three independent constituents cor-
responding to each place of a triple. Each place in a triple consists of either a 0, 3, or
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a 12, and they occur equally likely. Each place of a triple can be associated with its
own sample space: Ω1 “ t0, 3, 12u, Ω2 “ t0, 3, 12u, and Ω3 “ t0, 3, 12u. Be-
cause 0, 3, and 12 are put into each place of a triple without prejudice, we may say
that the event that a 0, 3, or 12 appears in place 1 and the event that 0, 3, or 12 ap-
pears in place 2 and the event that 0, 3, or 12 appears in place 3 are equally likely.
Let X1 be a random variable such that it maps Ω1 into 0, 3, and 12. By assumption
of equally likely outcomes, P pX1 “ 0q “ P pX1 “ 3q “ P pX1 “ 12q “ 1

3
. The ran-

dom variable, X1, has an expected value, namely ErX1s “ 0p1
3
q ` 3p1

3
q ` 12p1

3
q “ 5.

What is characteristic of X1 is also characteristic of X2 and X3. All three random vari-
ables have the same properties. How each slot in the triple is filled is independent of how
the others are filled; therefore, X1, X2, and X3 are independent random variables. They
are identically distributed which implies that ErX1s “ ErX2s “ ErX3s “ 5 “ µ and
varpX1q “ varpX2q “ varpX3q “ p0 ´ 5q2p1

3
q ` p3 ´ 5q2p1

3
q ` p12 ´ 5q2p1

3
q “ 78

3
“ σ2.

Definition 24. i.i.d. means independent identically distribution.

Earlier, we found that Erx̄s “ 5 and varpx̄q “ 78
9
by direct computation. By definition,

x̄ “ x1`x2`x3

3
, andX1,X2, andX3 are i.i.d. with expected value, µ, and variance, σ2, so that

in light of the preceding paragraph, Erx1`x2`x3

3
s “ Erx̄s “ 5 “ 5`5`5

3
“ Erx1s`Erx2s`Erx3s

3
“

3µ

3
“ µ. In other words, Erx1`x2`x3

3
s “ Erx1s`Erx2s`Erx3s

3
“ 3Erxis

3
“ Erxis. Likewise,

var
´x1 ` x2 ` x3

3

¯

“ varpx̄q “ 78

9
“

78
3

` 78
3

` 78
3

32

“ varpX1q ` varpX1q ` varpX1q
32

“ 3σ2

32
“ σ2

3

The expressions of Erx̄s and varpx̄q which are written in terms of X1, X2, and X3

suggest the formulation of a general theorem.

lemma 1. If X1, X2, . . . , Xn are i.i.d., then ErX1s “ ErX2s “ . . . “ ErXns and
varpX1q “ varpX2q “ . . . “ varpXnq.

Theorem 8. If X and Y are random variables, then E[X+Y]=E[X]+E[Y].

Theorem 9. If a and b are constants, then E[aX+b]=aE[X]+b and var(aX+b)=a2varpXq.

Theorem 10. If X and Y are independent random variables, then var(X+Y)=var(X)+var(Y).

Theorem 11. If X1, X2, . . . , Xn are i.i.d. each with mean µ and variance σ2, and
x̄ “ X1`¨¨¨`Xn

n
, then

Erx̄s “ µ and varpx̄q “ σ2

n
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Proof. Erx̄s “ ErX1`X2`...`Xn

n
s “ ErX1`...`Xns

n
“ ErX1s`...`ErXns

n
“ µ`...`µ

n
“ nµ

n
“ µ

varpX1`X2`...`Xn

n
q “ varpX1q`varpX2q`...`varpXnq

n2 “ σ2`...`σ2

n2 “ nσ2

n2 “ σ2

n
�

We had observed that X1, X2, and X3 are identically distributed. If it is assumed that
they are independent random variables then they are i.i.d. random variables each with µ=5

and σ2 “ 78
3
. Accordingly, by Theorem 11, ErX̄s “ 5 and varpX̄q “

78

3

3
“ 78

9
which are in

exact agreement with the values which were obtained directly from definition. Getting the
same answers by means of two different ways illustrates a rule of problem solving. There
are usually two ways to solve a problem: a short and easy way and a long and difficult way.
Computing ErX̄s and varpX̄q directly from the definitions of expected value and variance
is the long and difficult way. Resorting to a theorem like Theorem 11 is the short and easy
way. Even though both ways produce the same answers, who, when time is precious and
patience is short as it often happens during an examination, would not choose to use the
theorems?

x̄ median s2

Erx̄s “ 5 Ermedians “ 123
27

Ers2s “ 698
27

medianpx̄q “ 5 medianpmedianq “ 3 medianps2q “ 27
varpx̄q “ 78

9
varpmedianq “ 112

3
varps2q “ 251462

729

In conclusion, a summary of the results gotten from directly applying the basic defini-
tions of expected value and variance for the three sampling random variables, x̄, median,
and s2, is given above.

Example 25. Let Xi „ bp100, 1
5
q, denote x̄ “ X1`X2`X3`X4

4
and suppose xi’s are inde-

pendent; i.e. they are i.i.d.

1. ErX1s “ ErX2s “ ErX3s “ ErX4s “ np “ 1001
5

“ 20 “ µ

2. By Theorem 11, Erx̄s “ µ “ 20 or

ErX1`X2`X3`X4

4
s “ ErX1s`ErX2s`ErX3s`ErX4s

4
“ 20`20`20`20

4
“ 20

3. varpXiq “ npq “ 1001
5
4
5

“ 16 “ σ2 i “ 1, 2, 3, 4

4. By Theorem 11, varpx̄q “ σ2

n
“ 16

4
“ 4, or

varpX1`X2`X3`X4

4
q “ varpX1q`varpX2q`varpX3q`varpX4q

16
“ 4r100p 1

5
qp 4

5
qs

16
“ 4.

12 Estimation of Parameters

Suppose three fair coins are flipped and the number of heads that appear are counted
by the random variable, X, then X „ bp3, .5q. The coins might not be fair but actually
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Figure 4

loaded ones. The probability of getting a head, in this alternate experiment, is unknown
but denote it by p, so that X „ bp3, pq. Based on the data obtained from the experiment
of flipping three coins 70 times of unknown probability of getting a head, the histogram
shown on the left was constructed. This is the same histogram which appears in Figure
12.
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The histogram looks like a Binomial distribution. If that is the case, then what Binomial
distribution comes closest to fitting the histogram? To answer that question, we hypothe-
size that the random variable of counting the number of heads be distributed as a generic
Binomial distribution like X „ bpν, pq with yet to be determined parameters, ν and p. If
the probability distribution is supposed to describe the data which we see presented in the
form of a histogram, then it should have, at least, the same center of mass as the one for
the histogram. That Binomial distribution which comes closest in matching the histogram
will be that one for which ErXs “ x̄. For X „ bpν, pq, ErXs “ νp; therefore, νp “ x̄ is the
necessary condition that we are imposing to find the best Binomial distribution for the
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data. Simply solving for p gives: p̂ “ x̄
ν
. This particular value of p is an empirically derived

number from real data; it is not a probability which is something theoretical. In order to
avoid confusion over this matter, statisticians put a hat over p to signify that this p is an
estimate based on data of the theoretical p.

We know already that ν “ 3 because three coins were flipped and x̄ “ 89
70
; therefore,

p̂ “
89

70

3
“ 89

210
« .4238. A picture of bp3, 89

210
q is shown to the right of the histogram. It looks

as if it makes a good fit with the histogram. But a closer inspection reveals that bp3, 89
210

q
does not match the histogram exactly. It does, out of all possible Binomial distributions,
fit the histogram the best, but it is not an exact match as the entries in the following table
prove.

k Observed Frequencies Estimated Probabilities from bp3, 89
210

q
P(X=0) 11

70
“ .157

`

3

0

˘

p̂0p1 ´ p̂q3 “ 1771561
9261000

“ .191

P(X=1) 33
70

“ .471
`

3

1

˘

p̂1p1 ´ p̂q2 “ 3909147
9261000

“ .422

P(X=2) 22
70

“ .314
`

3

2

˘

p̂2p1 ´ p̂q1 “ 2875323
9261000

“ .310

P(X=3) 4
70

“ .057
`

3

3

˘

p̂3p1 ´ p̂q0 “ 704969
9261000

“ .076

There might be many reasons for the discrepancy. The most obvious one is that some
other probability distribution is a better candidate to describe the data. It might be such
a novel distribution that it might not have been discovered yet. Perhaps the discrepancy
is due to insufficient number of flips of the coin. Our intuition tells us that the more
experimental data, the better the estimates, so that with enough flips the histogram and
the Binomial distribution will converge to the same thing. Perhaps the flips were not
performed independently of each other. Perhaps the person who did the flipping is not a
good flipper of coins, and so on.

Ultimately, we would like to associate a probability distribution with each of the de-
scriptive statistics, in order to explain the data. An even better result would be to find
a random variable whose expected value equals the population mean and whose variance
equals the population variance. Such a quest is almost impossible to do if one is restricted
to a one parameter distribution like the Binomial distribution. If an exact fit is not possible
in general, then the next best thing to do is to find a probability distribution that comes
close enough to the histogram, so that it does adequately describe the data to suit our
needs. What is close or not close is an issue that will be discussed in the topic of testing
hypotheses, but, until then, we will recognize the remarkable discovery that there is one
distribution which provides the means of estimating both the mean and the variance and
which can adequately imitate a given histogram most of the time. That distribution is
none other than the renowned Normal distribution.
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Suppose Xi „ Npµ, σ2q and that it is hypothesized that Xi represents the i
th measure-

ment, xi, which is taken from an actual experiment. If that assertion is true, then because
ErX̄s “ µ we may assert that µ̂ “ x̄ where x̄ is the sample mean. In other words, the
assertion implies that the sample mean is an estimate of the population mean. Similarly,
the sample variance, s2, is an estimate of the population variance σ2. The key ingredient
for making these assertions is that the Normal distribution via Xi „ Npµ, σ2q provides
a bridge, though mathematically complicated to justify, between the world of probability
signified by pµ, σ2q and the real world signified by px̄, s2q. The Normal distribution is truly
a remarkable distribution. No other distribution is so nice.

Not all estimators do a good job in estimating a parameter of a probability distribution.
An estimator might be biased. For example, a claim might be made that µ̂ “ 3x̄ ` 5.
The question arises whether that estimator of µ is a good one in the long run. It might
be good perhaps once or twice but never again. Is it good in the long run? That is,
in expectation, will it equal the population mean? Taking the expected value produces:
Erµ̂s “ Er3x̄ ` 5s “ 3Erx̄s ` 5 by Theorem 9. By Theorem 11, 3Erx̄s ` 5 “ 3µ ` 5 ‰ µ.
That estimator is definitely biased. This leads to an important definition:

Definition 25. If Θ̂ is an estimator of Θ, then Θ̂ is called an unbiased estimator

of Θ, if ErΘ̂s “ Θ.

If Xi are i.i.d. Npµ, σ2q and x̄ “ X1`X2`¨¨¨`Xn

n
, then Erx̄s “ µ; hence x̄ is called an

unbiased estimator of µ. Also, Ers2s “ σ2; hence s2 is called an unbiased estimator of
σ2. It is only now after a good deal of discussion on the subject of probability that a
justification can be given for defining s2 the way we did back in Chapter 1. Depending on

the author, s2 might be defined to be: s2 “
ř

iPS
pxi´x̄q2

n
then Ers2s “ n´1

n
σ2 which implies

that this definition of s2 makes it a biased estimator of σ2. That is why n-1 is put in the
denominator of our definition of s2, in order to make it an unbiased estimator of σ2.

If Xi are i.i.d. Npµ, σ2q, then it can be proved that the z-score of x̄ is distributed as a
Standard Normal distribution; i.e. z “ x̄´µ

σ?
n

„ Np0, 1q.

Example 26. Let Xi „ Np5, 9q for i=1, 2, 3, 4, and 5 be independent random variables.

1. ErXis “ 5.

2. varpXiq “ 9.

3. Erx̄s “ 5.

4. varpx̄q “ σ2

5
“ 9

5
.

Suppose, on the other hand, that Xi are independent identically distributed but with
an unknown distribution. Such would be the case in any actual experiment like those
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involving college examination scores, weights of tomatoes, number of home runs, speed
of asteroids, or whatever. How any of these random variables might be distributed is
completely unknown. Nevertheless, the Central Limit Theorem says that it is sufficient
that the random variables be i.i.d. for the sample z-score to converge to Np0, 1q as the
number of observations goes to infinity.

Theorem 12. (Central Limit Theorem) If X1, X2, . . . , Xn are i.i.d. and x̄ “ X1`¨¨¨`Xn

n

then

x̄ ´ Erx̄s
a

varpx̄q
“ sample z-score Ñ Np0, 1q as n Ñ 8

This theorem is another indication of the amazing versatility of the Normal distribution.
Regardless of how Xi is distributed, so long as they are i.i.d., the sample z-score will
converge to Np0, 1q as the number of observations increase to infinity.

A celebrated story relating the utility of the Central Limit Theorem to the behavior
of the masses was given be Francis Galton.

In 1906, Galton visited a livestock fair and stumbled upon an intriguing
contest. An ox was on display, and the villagers were invited to guess the
animal’s weight after it was slaughtered and dressed. Nearly 800 gave it a go
and, not surprisingly, not one hit the exact mark: 1,198 pounds. Astonishingly,
however, the average of those 800 guesses came close very close indeed. It was
1,197 pounds.

It is this capacity of the Central Limit Theorem to explain social behavior of a class of
people which makes sociology possible.

Example 27. We are given a set of data which was obtained from a sample of size 10.
Suppose someone with prior knowledge about the situation informed us that each observa-
tion represented the realized value of a random variable which is distributed as a Np5, 9q.

−10 −5 0 5 10 15 20

Normal Distribution: N(5,9)
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1. The statement of the problem implies that the Normal distribution cited in the prob-
lem adequately explains the population. Consequently, without seeing the data nor
doing any calculations, the population mean is: µ “ 5.

2. Population variance: σ2 “ 9.

3. Erx̄s “ µ “ 5.

4. varpx̄q “ σ2

n
“ 9

5
.

5. Because each observation is assumed to follow the Normal distribution with the same
parameters, then x̄ „ NpErx̄s, varpx̄qq Ñ x̄ „ Npµ, σ2

n
q “ Np5, 9

5
q.

6. If, however, it is only known that the observations are independent and are iden-
tically distributed, then, by the Central Limit Theorem, Npx̄, s2

n
q will approximate

the exact distribution of x̄, and Npx̄, s2

n
q will converge to Npµ, σ2

n
q as the number of

observations tend to infinity.

Problem 4. A random sample of size 36 elements is drawn from a population which
the Normal, N(10,144), adequately describes.

1. Erx̄s “ µ.

2. varpx̄q “ σ2

n
“ 144

36
“ 4; therefore, x̄ „ Np10, 4q.

3. P px̄ ą 11q “ P p x̄´10?
4

ą 11´10?
4

q “ P pz ą 1
2
q “ 1´P pz ď 1

2
q “ 1´p.5` .1915q “ .3085.

Problem 5. In a manufacturing plant, 50 products were weighted. Let Xi be the mea-
surement of the weight of a product, i, in grams. Assume that the Xi’s are i.i.d. N(6,2.5)
and that they adequately describe the measurements. Find the probability that the average
weight will lie between 5.75 and 6.25 grams.

1. Erx̄s “ µ “ 6.

2. varpx̄q “ σ2

50
“ 2.5

50
“ .05.

3. In order to find, P p5.75 ď x̄ ď 6.25q, we first observe that x̄ „ Npµ, σ2

n
q “ Np6, .05q;

therefore,

P p5.75 ď x̄ ď 6.25q “ P

ˆ

5.75 ´ 6?
.05

ď x̄ ´ 6?
.05

ď 6.25 ´ 6?
.05

˙

“ P p´1.118 ď z ď 1.118q
“ P pz ď 1.118q ´ P pz ď ´1.118q
“ .5 ` .3686 ´ p.1314q “ .7372
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Example 28. Xi „ Np13, 9q for X1, X2, . . . , X36. Find P p12.5 ď X̄ ď 13.5q.
The parameters of the sampling distribution are: Erx̄s “ 13 and varpx̄q “ 9

36
, so that

X̄ „ Np13, 9
36

q and:

P

¨

˝

12.5 ´ 13
b

9
36

ď x̄ ´ 13
b

9
36

ď 13.5 ´ 13
b

9
36

˛

‚ “ P p´1 ď z ď 1q

“ P pz ď 1q ´ P pz ď ´1q
“ .8413 ´ .1587

“ .6826

Example 29. Approximation of Binomial distribution by Normal distribution. Let X „
bp55, .373q; find P pXi ď 25q. Use Central Limit Theorem where n=1 and that ErXs “ np “
55p.373q “ 20.515 and varpXq “ npq “ 55p.373qp.627q “ 12.8629. Therefore computing
the sample z-score within the probability statement gives: P pX´20.515?

12.8629
ď 25´20.515?

12.8629
q “ P pz ď

1.2505q “ .5 ` .39435 “ .8944. The exact answer is: P pX ď 25q “ .9164213 . . .. So using
the Normal distribution produces only an approximation for computing the probability of
a Binomial distribution. Even in the case of one observation, the approximation is still
rather good.
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Appendix A: Conditional Expectation and Conditional

Variance

50%

35%

10%

5%

$0 $100 $200 $300

Distribution of Sales

Figure 5

100 200 300

10%

30%

60%

Distribution of the Number of Customers

Figure 6

The owner of a store which sells perfume conducted a study of the number of customers
which enter his store and the amount in sales which a customer makes.

S “

$

’

’

&

’

’

%

$0 50%
$100 35%
$200 10%
$300 5%

(2)

N “

$

&

%

100 30%
200 60%
300 10%

(3)

According to the owner’s study, the distribution of sales is given in equation (2) and
shown in Figure 5, and the distribution of the number of customers who enter the store is
given in equation (3) and in Figure 6.
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The owner wishes to find the expected sales on a day and the variance of the sales. To
calculate those quantities, the owner will employ conditional expectation and conditional
variance.

Theorem 13. Given random variables, X and Y, then:

ErY s “ ErErY |Xss (4)

varpY q “ varpErY |Xsq ` ErvarpY |Xqs (5)

Conditioning is utilized because the total sales is related to both the random variable
N, the number of customers per day, and the random variable S, the amount of sales
per customer. Let Si be the amount which customer i purchases. Assume that customers
will purchase perfume independently of another customer and that sales are identically
distributed. Of course, a companion of a customer might recommend a certain brand of
perfume and then purchase the same brand. To simplify the problem, however, we will
assume that the customers act independently of each other.

We know from Definition 12 found on page 24 that the expected value of a random
variable is:

ErXs “
ÿ

all possible
values of X

kP pX “ kq

and from Definition 13 that the variance of a random variable is:

varpXq “
ÿ

all possible
values of X

pk ´ ErXsq2P pX “ kq

The expected value of S and of N as well as their variances are given below:

ErNs “ 100p.3q ` 200p.6q ` 300p.10q “ 180

varpNq “ p100 ´ 180q2p.3q ` p200 ´ 180q2p.6q ` p300 ´ 180q2p.1q “ 3600

ErSs “ 0p.50q ` 100p.35q ` 200p.10q ` 300p.05q “ 70

varpSq “ p0 ´ 70q2p.50q ` p100 ´ 70q2p.35q ` p200 ´ 70q2p.10q ` p300 ´ 70q2p.05q “ 7100

Define the total daily sales to be T “
N
ř

i“1

Si. The complication which is readily seen is

that the upper limit of the sum is a random variable. If the upper limit was a constant,
then we would be able to evaluate the summation. The use of conditional expectation will
make N a constant for the purpose of evaluating the sum.

According to equation (4), we can write: ErT s “ ErErT |Nss. Given an N, then we find
the expected value of T.
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ErT |Ns “ Er
N
ř

i“1

Si|Ns. By assumption, the Si’s are identically distributed, so that

ErSis “ ErSs @i. Given N, Er
N
ř

i“1

Sis “
N
ř

i“1

ErSs “ NErSs. Therefore, ErT |Ns “ NErSs,
and ErT s “ ErErT |Nss “ ErNErSss “ ErNsErSs “ 180p70q “ $12, 600. This agrees
with our intuition; the total sales is the product of the average sale per customer by the
expected number of customers. The calculation of the variance of the total sales, on the
other hand, is as always the challenge. Equation (5) will make the calculation possible.

In the context of the owner’s perfume business, varpT q “ varpErT |Nsq`ErvarpT |Nqs.
For the first term, we already calculated ErT |Ns “ NErSs; therefore, the first term
of equation (5) is varpErT |Nsq “ varpNErSsq “ varpNqErSs2, because, according to
Theorem 9 found on page 52, ErSs being a constant comes out of the variance as a square.
We complete the calculation as varpErT |Nsq “ varpNqErSs2 “ 3600p702q “ 17640000

We, now, need to address the second term of equation (5), ErvarpT |Nqs. To begin

with, varpT |Nq “ varp
N
ř

i“1

Si|Nq. By assumption, Si’s are independently and identically

distributed. Given N, varp
N
ř

i“1

Siq “
N
ř

i“1

varpSq “ NvarpSq; therefore, ErvarpT |Nqs “
ErNvarpSqs “ ErNsvarpSq because varpSq is a constant and by referring again to Theo-
rem 9 we are led to ErvarpT |Nqs “ ErNsvarpSq “ 180p7100q “ 1278000.

By combining both terms, we get varpT q “ 17640000 ` 1278000 “ 18918000 and its
square root is: 4349. Based on the owner’s study, the expected sales is $12, 600˘4349 with
a CV of 4349

12600
“ 34.5%.

When this problem is view from the perspective of quality control, we observe that
the first term of varpT q is 14 times larger than the second term. In the first term,
varpErT |Nsq “ varpNqErSs2, the variablity in the number of customers, varpNq, causes
the very large value of the first term. In other words, the closer the variance of N is to
zero, the more certain the owner of the perfume store will be in estimating the amount
of daily sales. He might want to launch a new advertising campaign in such as way as to
create a more uniform flow of customers and, at the same time, possibly to motivate the
window shoppers to purchase even an inexpensive perfume, in order to drive down varpSq.
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|
z

Cumulative Probabilities for a N(0,1) Distribution: Φpzq ´ .5

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.00000 0.00399 0.00798 0.01197 0.01595 0.01994 0.02392 0.0279 0.03188 0.03586

0.1 0.03983 0.04380 0.04776 0.05172 0.05567 0.05962 0.06356 0.06749 0.07142 0.07535

0.2 0.07926 0.08317 0.08706 0.09095 0.09483 0.09871 0.10257 0.10642 0.11026 0.11409

0.3 0.11791 0.12172 0.12552 0.12930 0.13307 0.13683 0.14058 0.14431 0.14803 0.15173

0.4 0.15542 0.15910 0.16276 0.16640 0.17003 0.17364 0.17724 0.18082 0.18439 0.18793

0.5 0.19146 0.19497 0.19847 0.20194 0.20540 0.20884 0.21226 0.21566 0.21904 0.22240

0.6 0.22575 0.22907 0.23237 0.23565 0.23891 0.24215 0.24537 0.24857 0.25175 0.25490

0.7 0.25804 0.26115 0.26424 0.26730 0.27035 0.27337 0.27637 0.27935 0.28230 0.28524

0.8 0.28814 0.29103 0.29389 0.29673 0.29955 0.30234 0.30511 0.30785 0.31057 0.31327

0.9 0.31594 0.31859 0.32121 0.32381 0.32639 0.32894 0.33147 0.33398 0.33646 0.33891

1.0 0.34134 0.34375 0.34614 0.34849 0.35083 0.35314 0.35543 0.35769 0.35993 0.36214

1.1 0.36433 0.36650 0.36864 0.37076 0.37286 0.37493 0.37698 0.37900 0.38100 0.38298

1.2 0.38493 0.38686 0.38877 0.39065 0.39251 0.39435 0.39617 0.39796 0.39973 0.40147

1.3 0.40320 0.40490 0.40658 0.40824 0.40988 0.41149 0.41309 0.41466 0.41621 0.41774

1.4 0.41924 0.42073 0.42220 0.42364 0.42507 0.42647 0.42785 0.42922 0.43056 0.43189

1.5 0.43319 0.43448 0.43574 0.43699 0.43822 0.43943 0.44062 0.44179 0.44295 0.44408

1.6 0.44520 0.44630 0.44738 0.44845 0.44950 0.45053 0.45154 0.45254 0.45352 0.45449

1.7 0.45543 0.45637 0.45728 0.45818 0.45907 0.45994 0.46080 0.46164 0.46246 0.46327

1.8 0.46407 0.46485 0.46562 0.46638 0.46712 0.46784 0.46856 0.46926 0.46995 0.47062

1.9 0.47128 0.47193 0.47257 0.47320 0.47381 0.47441 0.47500 0.47558 0.47615 0.47670

2.0 0.47725 0.47778 0.47831 0.47882 0.47932 0.47982 0.48030 0.48077 0.48124 0.48169

2.1 0.48214 0.48257 0.48300 0.48341 0.48382 0.48422 0.48461 0.48500 0.48537 0.48574

2.2 0.48610 0.48645 0.48679 0.48713 0.48745 0.48778 0.48809 0.48840 0.48870 0.48899

2.3 0.48928 0.48956 0.48983 0.49010 0.49036 0.49061 0.49086 0.49111 0.49134 0.49158

2.4 0.49180 0.49202 0.49224 0.49245 0.49266 0.49286 0.49305 0.49324 0.49343 0.49361

2.5 0.49379 0.49396 0.49413 0.49430 0.49446 0.49461 0.49477 0.49492 0.49506 0.49520

2.6 0.49534 0.49547 0.49560 0.49573 0.49585 0.49598 0.49609 0.49621 0.49632 0.49643

2.7 0.49653 0.49664 0.49674 0.49683 0.49693 0.49702 0.49711 0.49720 0.49728 0.49736

2.8 0.49744 0.49752 0.49760 0.49767 0.49774 0.49781 0.49788 0.49795 0.49801 0.49807

2.9 0.49813 0.49819 0.49825 0.49831 0.49836 0.49841 0.49846 0.49851 0.49856 0.49861

3.0 0.49865 0.49869 0.49874 0.49878 0.49882 0.49886 0.49889 0.49893 0.49896 0.49900
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