
Charles Fleming

R Notes



Contents

Contents i

1 Introduction 1

1.1 ObtainingR for the Microsoft Operating System . . . . . . . . . . . . . . . . 4

2 Basic Syntax 7

2.1 Data Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Editing and Help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Graphics 19

3.1 Box Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Confidence Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 27

4 Statistics 31

5 Advanced Procedures and Tricks 39

6 Control Language 51

7 Application to Finance 55

7.1 Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 55

7.2 Yield to Maturity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.3 Application of Cubic Splines . . . . . . . . . . . . . . . . . . . . . . .. . . . 62

i



ii CONTENTS

7.4 Black and Scholes Option Pricing . . . . . . . . . . . . . . . . . . . .. . . . 63

8 Exercises 67

9 Appendix 1 69

plotmath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Bibliography 75



Chapter 1

Introduction

With the rise in popularity of Linux, there has occurred a concurrent rise in popularity of free-
ware. This popularity arises not necessarily because the software is free but because of the free-
ware’s recognized reliability and utility. Calling freeware by the name freeware can be mislead-
ing. While some software is distributed free of charge, the source code is copyrighted to keep
it a secret and to keep it a proprietary product of the company. A new book, in comparison,
is likewise protected by copyright; however, the owner of the book can read it, copy parts of it,
modify it, sell or give it away to someone else to read withoutrestrictions. The owner cannot sell
or distribute a modified version or parts of a copyrighted book without the publishers consent. In
the sense of having the freedom to modify, to copy, and to distribute at will a creative product,
there is software which is "copyrighted" under the General Public License (GPL). Under this
license which the Free Software Foundation has championed,software may be sold or may be
distributed, but, in either case, the source code must be made freely available to any user, so
that, in effect, the source code or modified version of the code will always remain in the public
domain. As neither the source code nor any derivative of it will ever become proprietary, anyone
can see how the software works. More importantly, one can modify the code to suit his particular
needs and, if the improvement is deemed a good one, he may communicate it to the authors of
the software for their consideration to implement. This practice happens routinely in the Linux
community where, from the tens of thousands of beta testers,many contribute improvements to
the Linux kernel. The community ofR developers like the community of Linux developers is a
development team of statistical software unsurpassed in size and talent.

At one time, S, a powerful language created at Bell Labs with which students of statistics
and researchers at scientific institutions have come to embrace, was freely available but not any-
more, since the divestiture of AT&T in 1984. A GPL implementation of S, calledR is currently
underway around the world in response to the proprietary restrictions placed on its successor,
S-PLUS.
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2 CHAPTER 1. INTRODUCTION

Free softwareis a nickname which is applied to computer programs which aredistributed
under the provisions of the General Public License (GPL). A similar name which is often used
is open source. The two are not exactly synonymous, but they agree in the basic tenet that the
source code of the computer program must be legible and made freely available to anyone. That
requirement is important because

• Source code reveals how the software works.

• Anyone can modify it.

• Accessibility to the source code encourages submission ofimprovements.

Source code is intelligible whereas binary code which is produced from the compiling of a
program for use on a specific operating system is unintelligible. For example, the source code
which comprises the function ofgenerrandom.c used inR is the following:

static void GetSeeds()
{

SEXP seeds;
seeds = findVar(R_SeedsSymbol, R_GlobalEnv);
if (seeds == R_UnboundValue) {

Randomize();
}
else {

if (seeds == R_MissingArg)
error(".Random.seed is a missing argument with no default\ n");

if (!isVector(seeds) || LENGTH(seeds) < 3)
error("missing or invalid random number seeds\n");

seeds = coerceVector(seeds, INTSXP);
ix_seed = INTEGER(seeds)[0]; if(!ix_seed) ix_seed++;
iy_seed = INTEGER(seeds)[1]; if(!iy_seed) iy_seed++;
iz_seed = INTEGER(seeds)[2]; if(!iz_seed) iz_seed++;
}

}

BecauseR is governed by the General Public License, the collection ofuncompiled programs
which constitute the source code ofR must be made freely available to anyone who might want
to study the logic of a certain procedure like the excerpt shown above for generating random
numbers. Curiosity could lead someone to improve or correctthe program and if the modification
is deemed a good one by the core developers ofR then it will be implemented in the official
version.

The binary code; however is unintelligible. It is produced when the source code is compiled
for an operating system. The compiled version ofgenerrandom.c which was shown above
is the following unintelligible binary code:
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^?ELF^A^B^A^@^@^@^@^@^@^@^@^@^@^A^@^B^@^@^@^A^@^@^@^@^@^@^@^@^@^@n<88>
^@^@^@^@^@4^@^@^@^@^@(^@^L^@^A^@.shstrtab^@.text^@.data^@.rodata^@.stab
^@.stabstr^@.symtab^@.strtab^@.rela.text^@.rela.sta b^@.comment^@^@^@^@
<9D><E3><BF><90><90>^P ^@@^@^@^@^A^@^@^@<92>^P^<90>^P^@@^@^@^@^A^@^@^@
!^@^@^@@^@^@^@^A^@^@^@^S^@^@^]<92>^Rb=@^@^@^@^A^@^@^@<D0>$ ^@<D0>^D ^@
<80><A2>^@^V<80>^@^E^A^@^@^@<D0>^D ^@<92> ^<D2>$ ^@!^@̂@^@@^@^@^@^A^@^
@^@^S^@^@^]<92>^Rbc@^@^@^@^A^@^@^@<D0>$ ^@<D0>^D ^@<80><A2> ^@^V<80>^@
^E^A^@^@^@<D0>^D ^@<92> ^<D2>$^@!^@^@^@@^@^@^@^A^@^@^@^S^@^@^]<92>^Rbs@
^@^@^@^A^@^@^@<D0>$ ^@<D0>^D ^@<80><A2>^@^V<80>^@^E^A^@^@^@<D0>^D ^@<92>
^<D2>$^@<81><C7><E0<81><E8>^@^@<9D><E3><BF><88>

The GPL originated in 1984 and comes under the auspices of theFree Software Foundation.
Richard Stallman created the GNU General Public License andthe GNU Library General Public
License.

The provisions of the GPL among others are as follows:

1. If you distribute copies of such a program, whether gratisor for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can
get the source code. And you must show them these terms so theyknow their rights.

2. You may copy and distribute verbatim copies of the Program’s source code as you receive
it, in any medium, provided that you conspicuously and appropriately publish on each
copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices
that refer to this License and to the absence of any warranty;and give any other recipients
of the Program a copy of this License along with the Program.

3. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under the
terms of Section 1 above, provided that you also meet all of these conditions:

(a) You must cause the modified files to carry prominent notices stating that you changed
the files and the date of any change.

(b) You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a whole
at no charge to all third parties under the terms of this License.

Copies of GPL and LGPL may be obtained from the Free Software Foundation:

• GPL: ftp.gnu.org/pub/gnu/COPYING

• LGPL: ftp.gnu.org/pub/gnu/COPYING.LIB

• GnuManifesto:ftp.gnu.org/pub/gnu/GNUinfo
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• Webpage:www.fsf.org

In particular, the terms governing the use ofR are given verbatim below:

This software is distributed under the terms of the GNU GENER AL
PUBLIC LICENSE Version 2, June 1991. The terms of this licens e
are in a file called COPYING which you should have received wi th
this software.

If you have not received a copy of this file, you can obtain one
via WWW at http://www.gnu.org/copyleft/gpl.html, or by wr iting to:

The Free Software Foundation, Inc.,
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

A small number of files (the API header files and export files ,
listed in R_HOME/COPYRIGHTS) are distributed under the
LESSER GNU GENERAL PUBLIC LICENSE version 2.1.
This can be obtained via WWW at
http://www.gnu.org/copyleft/lgpl.html, or by writing to the
address above

‘‘Share and Enjoy.’’

1.1 Obtaining R for the Microsoft Operating System

1. Make a sub-directory inC: drive and call it R.

2. http://cran.r-project.org

3. Select Windows ( 95 and later)

4. Select base

5. Select mirror near you

6. Selecthttp://lib.stat.cmu.edu/R/CRAN at Carnegie Mellon University Uni-
versity

7. The page automatically jumps back to Windows ( 95 and later)

8. Select base

9. Double click onrw1070.exe
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10. Select save

11. The next menu asks where on the PC to putrw1070.exe . Put it inC:\R .

12. Wait for about 4 minutes asR is being retrieved from Carnegie Mellon.

13. A box appears. Select open.

14. TheR installation starts.

15. Do not modify anything; simply click next, next, ...

16. To test ifR works, click on theR icon;R should appear.

There are many libraries or what are nicknamedadd-onpackages which are collections
of procedures which serve a specialized purpose. Some of thestandard libraries are invoked
automatically whenR is initiated. Others, because there are so many of them, are not included
in the installation ofR and must be invoked manually. For example, the library RQuantlib is
a set of routines which specializes in finance. It has routines written for options like American
Option and European Option. Given the strike price of the option, continuous dividend yield,
risk-free rate, time to maturity, and volatility of the underlying stock, the routine will produce
the value of the option and other numbers which appear to be important for a financial analyst.
In the Microsoft Windows version ofR there exists a button for downloading a library. This
version ofR will retrieve the library and install it on the computer.

In the UNIX/Linux arena, the procedure is more involved. A package likesurvey.tar.gz
is retrieved from thePackage Sourcessection ofhttp://cran.r-project.org/. Once the package has
been brought to the computer and placed in a directory such as/user/local/src/R/library ,
the package is installed by executing the command,R INSTALL survey.tar.gz .

Regardless of the operating system, to incorporate a library like survey into the current ses-
sion ofR it is sufficient to execute the commandlibrary("survey") while at the prompt.
The commandlibrary(help=survey) will display procedures which are contained in the
survey library, and the commanddata(package=survey) will display the names of sets
of data which came with the survey package when it was retrieved. Taking theapi data, for
example, the commandhelp(api) will describe it and will show its name,apipop . Finally,
the commandstr(apipop) will display explicit descriptive information of the variables of
apipop .

The market for statistical computing software is dominatedby SAS, SPSS, and S-PLUS.
The popularity ofR comes from the highly successful S language which is now proprietary
and is the basis of S-PLUS. SinceR is the GPL implementation of S, many users particu-
larly those who belong to the community of contributors of S are attracted toR . Obtaining
help from someone aboutR is easy. In general, help is easy, speedy, and usually complete.
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Help is sought from the community of users ofR through the use of e-mail. First, it is nec-
essary to subscribe to the r-help mailing list by registering after having gone to the web page,
http://www.r-project.org/ →Mailing Lists → r-help . Use theweb interface
to gain access to the
R-help -- Main R Mailing List: Primary help
web page. At that place in the web page system ofr-project.org , it is possible to subscribe
to ther-help mailing list. Address messages for help to:r-help@stat.math.ethz.ch .
Be mindful when composing the message that it will be sent to hundreds, if not thousands, of
people around the world. A response from several experienced users ofR will occur in a matter
of minutes.

Some of the principal developers ofR are:

• Friedrich Leisch and Kurt Hornik at Technische UniveritätWien (Vienna University of
Technology)

• Martin Maechler at Eidgenössische Technische HochschuleZürich (The Swiss Federal
Institute of Technology)

• Peter Dalgaard at the University of Copenhagen

• Ross Ihaka at the University of Auckland, New Zealand

• Robert Gentleman at Harvard University

• Thomas Lumley at the University of Washington



Chapter 2

Basic Syntax

What isR ? R is a statistical computing package which can be employed interactively or by
submitting programs in batch mode. The prompt which appearswhenR is invoked looks like:
>. Whenever a command is enclosed in a rectangle, the command is meant to be executed by
the reader as if it belongs to a tutorial. WhenR is used interactively, it can be used as a big
calculator.

>1+1 Addition
>2*2 Multiplication
>10-20 Subtraction
>105/35 Division
>57%%9 Modulo, i.e. 57(mod 9)
>2^5 Exponentiation
>sqrt(49) Square root
>exp(10) Exponentiation ofe
>log(10) Logarithm to the basee
>log10(10) Logarithm to the base 10
>pi Special constants
>complex(modulus=13,argument=pi/3) Complex number
>(13+5i)*(1-2i) Multiplication of complex numbers
>Mod(1+2i) Modulus of a complex number
>Arg(1+2i) Argument of a complex number
>Re(1+2i) Real part of a complex number
>Im(1+2i) Imaginary part of a complex number

Parentheses may be used for making compound expressions.
>2+(5-1)^(2^3)

R follows the usual order of precedence when performing arithmetic operations. The ma-

7
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nipulation of variables offers greater flexibility in performing numerical calculations. In R, what
looks like a variable is called anobject. Assignment of objects is done not by an= sign but by
means of using the<- symbol which is composed of the less than symbol,<, and the hyphen,-
and it looks like an arrow. The assignment symbol may face in either direction. Remember that
> merely signifies, in these notes, the prompt, and it is not a part of a command.
>x<-2
The number 2 is assigned tox .
>y<-3
The number 3 is assigned toy .
>x+y->z
The sum ofx andy is assigned toz .
The contents of an object can be displayed by typing the name of the object like,x , or by using
print(x) , for example:

>print("First Use of y")
>print(y)

According to the usual convention, a string of characters

which will be printed is enclosed within quotation marks.

Another common command for printing the contents of an object is cat . >cat(z)

While this command offers additional flexibility, it requires more detailed syntax. The following
set of instructions illustrate a more complete applicationof cat , and it illustrates the appearance
of the+ symbol which indicates the continuation of a line and it is not a part of a command.

>for (n in 1:length(z)){
+cat("First Use of cat. x+y=",z[n]," \n")
}

Rather than display the results of using

cat on the monitor, they can be directed to a file by using the file option:
>for (n in 1:length(z)){
+cat("First Use of cat. x+y=",z[n]," \n",file="/tmp/demo.txt",append=TRUE)
}

In this example, thefor loop on the indexn iterates through the values 1 to the length ofz.
For each value ofn, cat will print the phraseFirst Use of cat. x+y , followed by the
nth element ofz, and then since\n was specified,cat will begin a new line. More discussion
of for loops will appear in Chapter 6 on Control Language.

Vectors and matrices are more complicated objects.
>z<-c(0,2,4,6,8)
>u<-c(1,3,5,7,9)
>u+z

[1] 1 5 9 13 17
The [1] is used to denote that the output begins with element one. In more extensive output,
this notational device of conveniently denoting the beginning of a row with the position of an
element will become more apparent later. Multiplication ofvectors takes two forms: elementwise
multiplication and the dot product.
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>u*z [1] 0 6 20 42 72

This use of* demonstrates that it is a command which will produce elementwise multiplication.
A different symbol must be used to perform the dot product between two vectors or to perform
matrix multiplication. First, the transpose of a matrix or vector is produced as follows:

>t(u) so that the dot product of two vectors will conform and thatu′z, can be computed
using the matrix multiplication,%*%, command as in:

>t(u)%*%z [1,] 140 There are two ways to perform the product:uz′

>u%*%t(z) or >outer(u,z)

[,1] [,2] [,3] [,4] [,5]
[1,] 0 2 4 6 8
[2,] 0 6 12 18 24
[3,] 0 10 20 30 40
[4,] 0 14 28 42 56
[5,] 0 18 36 54 72

whereu = [1, 3, 5, 7, 9] andz = [0, 2, 4, 6, 8].

Earlier the object,z , was created by assigning a column of numbers toz :
>z<-c(0,2,4,6,8)
Another way to enter data intoR is by means of thescan() command. For example,

>z<-scan()
>1:0
>2:2
>3:4
>4:6
>5:8
>6:

The elements ofz can be entered one-by-one when prompted. The prompt

begins with the position of the vector followed by a colon, after which the value of the element
is entered. The process continues until the last element is followed by a blank.

It should be emphasized that the language ofR accommodates the needs of a professional
statistician who depends on matrix algebra, generating random numbers, computing probabili-
ties, and producing graphs. In these aspects,R is very efficient, and in these are its strengths.
A conspicuous difference betweenR and other brands of statistical computing software is the
absence of a graphical user interface (GUI). There is littleinterest in theR community to build
one, although there is a project currently underway to develop a GUI forR . The sentiments
which are prevalent among the users ofR are the same, in general, as those found elsewhere
among professional computer programmers. A GUI is regardedto be an unwanted impediment
to masterful programming. For a proficient computer programmer, the lexicon of a language
like R will have been memorized, and its use is honed by practice to the extent that a set of
commands may be written extemporaneously more quickly thanif he were to depend on a GUI.
Even if a functional GUI were available inR , it probably will receive little use.



10 CHAPTER 2. BASIC SYNTAX

As far as the conceptual design of writing a computer program, there is a very good cor-
respondence betweenR and SAS/IML except in regard to making graphs whichR is vastly
superior to SAS. The logic of a program written inR is similar to one written in FORTRAN,
and the syntax ofR bears a similarity to the syntax of C. In other words, someonewho is adept
at writing programs in FORTRAN, C, or SAS/IML will quickly understandR .

To see all the objects which exist in the current session, oneuses the commands:
>objects()
>ls()

Suppose an object is no longer needed and, to conserve space on a computer, it

should be removed, then it is deleted by:>rm(u) . Usels to verify thatu has been removed:

>ls()

AlthoughR will automatically perform an operation calledgarbage collectionfor the pur-
pose of returning memory to the operating system, sometimeswhen large objects have been used
and eventually deleted, executinggc() will clean things up inR ’s use of memory.

Vectors and matrices must conform in dimension otherwise a warning will be produced as
in:

>z >u<-c(1,3,5)
>u+z

[1] 1 5 9 7 11
Warning message:
longer object length

is not a multiple of shorter object length in: u + z

R will cycle through the elements of the shorter vector in order to complete the operation. This
is convenient sometimes, for example:

>u<-10
>u+z

[1] 10 12 14 16 18

Sets of commands sometimes occur so often that they are consolidated and given a name. One
such procedure isrep which is an abbreviation for replicate. Rather than assign 10 to u as
was done above and exploit the provision of cycling through the shorter vector to complete the
operation,u could have been assigned the vector consisting of[10, 10, 10, 10, 10] which then is
added elementwise to the vector,z . That is,

>u<-rep(10,length(z))
>u
>u+z

The command>rep(10,length(z)) means: repeat 10 as

many times as z is long. A similar command torep is seq for sequence.
>v<-seq(1,100,2)

[1] 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49
[26] 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 9 7 99
The[26] means that the26th element in the vector,v, begins the second row of the output to the
monitor. The command,seq(1,100,2) , is interpreted to mean that an arithmetic sequence
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begins with 1 and ends at 100 by a difference of 2 between steps.
A shorthand method for defining a sequence of consecutive numbers is:

>v<-1:10 [1] 1 2 3 4 5 6 7 8 9 10

This same sequence can be produced by:
>v<-seq(1,10,1)
>v<-seq(1,10)

The commandseq(1,10) is an abbreviated form ofseq(1,10,1)

which is actually an abbreviated form ofseq(1,10,by=1) . An arithmetic sequence begin-
ning with -1 and ending at 1 with a difference of .1 can be produced by:

>v<-seq(-1,1,.1)
>v

[1] -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0. 2 0.3 0.4
[16] 0.5 0.6 0.7 0.8 0.9 1.0

or by > seq(-1,1,len=21)

[1] -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0. 2 0.3 0.4
[16] 0.5 0.6 0.7 0.8 0.9 1.0

where the optionlen=21 specifies that a sequence be produced beginning with -1 and ending
at 1 so that the sequence consists of exactly 21 elements.

In the case of generating a geometric series, it is sufficientto use:
>3

∧(seq(1,10))

> [1] 3 9 27 81 243 729 2187 6561 19683 59049

There are many functions inR which appeal to a statistician like those which generate ran-
dom numbers. The functionrnorm produces random numbers from a Normal distribution, and
another popular procedure of the same kind isrunif for generating random numbers from a
Uniform distribution.

>v<-rnorm(10)
>v

[1] -0.2826475604 1.5474520284 0.1604545019 0.033532829 2 -1.2486159628

[6] -1.1899395442 -1.6716649564 0.0002192872 -0.4893145 173 2.1375458025

No computer program exists which will produce purely randomnumbers. In fact, devising a
rigorous definition of random numbers is still an unsolved problem even though we have an
intuitive understanding of its meaning. What is called a random number in a computer routine
is a number which is produced from a variety of algorithms taken from the theory of numbers.
Random number generators include the popular linear and multiplicative congruential random
number generators. Each of these algorithms depends on a large prime number from which a
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remainder is obtained by means of the operation in modular arithmetic calledmodulo. These
algorithms are usually given names. Each has its strengths and problems. A few of the named
algorithms for generating random numbers are: Wichmann-Hill, Marsaglia-Multicarry, Super-
Duper, Mersenne-Twister, and Knuth-TAOCP. Although it is possible inR to specify which
algorithm to use, an ordinary user ofR will probably not care and will simply accept the default
generator. If none of the random number generators which areavailable inR is good enough,
then becauseR is licensed under the GPL, someone can modify the source codeof the random
number generator, incorporate one from somewhere else, or compose his own novel random
number generator. If it is a good one, then it is worthy of communicating it to the maintainers of
R for consideration.

The command,order , will determine the ranking of each element in a vector.
>v<-c(-3,4,1,2,5)
>order(v)

[1] 1 3 4 2 5

This is useful in arranging the elements of a vector in ascending order. It produces a list of posi-
tions ofv which will correspond to the right ordering ofv . In ascending order, a rearrangement
of v is -3 1 2 4 5 in which -3 is seen to correspond to position 1 inv ; 1 corresponds to posi-
tion 3 inv ; 2 corresponds to position 4 inv ; 4 corresponds to position 2 inv ; and, 5 corresponds
to position 5 inv . The command,order , therefore, will produce a vector of positions which if
the original vector had been arrayed according to the positions it will be arranged in ascending
order. By arranging the1st, 3rd, 4th, 2nd, and5th elements ofv in that order,v will be sorted in
ascending order:

>o<-order(v)
>v[o]

[1] -3 1 2 4 5

In order to produce a vector in descending order, it is sufficient to useorder(-v) , so that,
>o<-order(-v)
>v[o]

[1] 5 4 2 1 -3

The command,rev , reverses the order of a vector.
>rev(v) [1] 5 2 1 4 -3

The square brackets are used to make subsets of a vector, matrix, or data frame.
>v[1]
>v[2:4]
>v[c(2,5)]

. To identify the position of an element of a vector, a logicalrelation is em-

ployed. Suppose, >h<-c(1,2,4,1,3,10) then >h==1 will print TRUEat every position
of v at which a 1 appears.

[1] TRUE FALSE FALSE TRUE FALSE FALSE

The use of== invokes a logical expression inR which produces a series ofTRUEandFALSE
each corresponding to an entry in the vector. The output can be used to make subsets according
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to some condition.
>h[h==1] [1] 1 1

>h[h<=4] [1] 1 2 4 1 3

One may chose specific positions like the1st, 2nd, and5th positions as in:
>h[c(1,2,5)] [1] 1 2 3

It is not uncommon to exclude elements of a vector or matrix. In order to exclude the1st and4th

elements ofv , one may use:
>h[-c(1,4)]
The hypen which is the prefix ofc(1,4) is interpreted to mean exclude.

2.1 Data Frames

A data frame is simply a combination of variables. They are useful when the objects are analyzed
at once rather than typing the individual objects repeatedly for each procedure. A data frame is
not a matrix, even though a data frame may at first seem like a matrix, since it can be manipulated
as if it were a matrix. Let

>u<-seq(0,8,2)
>v<-seq(1,9,2)
>dd<-data.frame(u,v)
>dd

u v
1 0 1
2 2 3
3 4 5
4 6 7
5 8 9

The sequences,u andv , have been combined into an object called a data frame. The use ofstr
produces a synopsis of the structure and contents of an object, for example:

>str(dd)

‘data.frame’: 5 obs. of 2 variables:
$ u: num 0 2 4 6 8
$ v: num 1 3 5 7 9

Let cc<-data.frame(seq(1,8,1),seq(9,2,-1)) be another data frame, then
>dd+cc

>dd*cc

>dd/cc

>plot(dd)
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are all successful commands but the command for matrix multiplication
>t(dd)%*%cc
fails, becausedd andcc are not matrices; they are data frames.

Any number of variables which conform in dimensions may be put together into a data frame.
For example, let

>u<-seq(1,8,1)
>v<-seq(9,2,-1)
>z<-seq(-8,-1,1)

. The vectors,u, v , andz may be used to form the dataframe,ee , which,

in turn, can be used for the purpose of processing the collection of objects all at once.
>ee<-data.frame(u,v,z)
>plot(ee)

A unit of a dataframe is extracted by means of a $ symbol as inee$u . Given a dataframe,
it is possible to manipulate elements individually by extracting them and operating on them, so
that, for example

t(ee$u)%*%ee$v

> [1,] 156

Having to write the name of the data frame becomes a nuisance after awhile. The command,
attach() , will put the variables which constitute the data frame in the current workspace.
Rather than writet(ee$u)%*%ee$v , one could have written:

>attach(ee)
>t(u)%*%v

without having to make a reference to the data frame,ee , again. When the

processing of the data frame,ee , ends, the constituents of the data frame are taken out of the
workspace by executing:

>detach(ee)

2.2 Matrices

While a dataframe bears a resemblance to a matrix in some ways, it is not a matrix, but, on the
other hand, it can be converted into a matrix by means of the command,as.matrix .

>m<-as.matrix(dd)
>m

. The same matrix could have been created by

>cbind(u,v,z) The command,cbind , is a command which will append columns of one
matrix onto the columns of another. Likewise,rbind is used to append rows of a matrix onto
the rows of another matrix as in: >rbind(u,v,z) which will produce one long vector in
whichz is appended tov which in turn is appended tou. A clever use of transpose withrbind
will produce the same thing ascbind , for example
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>t(rbind(t(u),t(v),t(z))) The choice of usingrbind or cbind is dictated by the
context of the problem. Sometimes, it is appropriate to append by columns and other times by
rows. The latter use of appending by rows withrbind will be extensively used in an example
of a Monte Carlo technique.

Names can be assigned to a matrix at its creation by
>m<-cbind(STAT=u, ENGLISH=v, PROFITS=z)
>m

STAT ENGLISH PROFITS
[1,] 1 9 -8
[2,] 2 8 -7
[3,] 3 7 -6
[4,] 4 6 -5
[5,] 5 5 -4
[6,] 6 4 -3
[7,] 7 3 -2
[8,] 8 2 -1

Names which may be assigned to columns or to rows are helpful not only to remember a
significant association of an element with something but also to make them appear in the output
of a stored procedure later. Names are given to columns:

>colnames(x)<-c("w","x","y","z") or names are given to rows:

>rownames(x)<-letters[1:3]
>x

Because names are inherited by procedures to produced

popular outputs like an analysis of variance table or plots give the names as specified to columns
and rows of a matrix.

An internal function for producing lower case letters is called letters , andLETTERS
produces upper case letters.

>letters
>LETTERS
>colnames(x)<-letters[23:26]
>x

The transpose of a matrix is
>t(m) An element of a matrix can be directly changed by modifying anindividual element

>m[3,2]<-9999
>m

Another way to create a matrix besides creating a matrix froma dataframe is to use the
command,matrix , for example:
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>x<-matrix(0,3,4)
x

[,1] [,2] [,3] [,4]
[1,] 0 0 0 0
[2,] 0 0 0 0
[3,] 0 0 0 0

or to initiate a matrix with a sequence of numbers which will be wrapped the sequence into a
matrix along columns and rows the following command can be used:

>x<-matrix(1:12,nrow=3,byrow=T)
>x

[,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 5 6 7 8
[3,] 9 10 11 12

2.3 Editing and Help

Maintaining a cheatsheet of useful or tricky commands is a good practice, because there are
approximately 681 commands in the basic package ofR . It is impossible to remember all of
them let alone to remember the details of one’s favorite commands. It is especially annoying to
forget the syntax of a command after it had been used in a clever application once before.

Many features of a command are described by prefixing? before the procedure of interest:
>?Arithmetic or >?Logic

The command,apropos , will search the current session ofR for all commands containing
the procedure in their names. For example,

>apropos("plot")

If one of the many commands involvingplot seems interesting liketermplot , then the
description of its syntax may be examined by using?termplot . Usually the examples
which are given at the end of a description are extremely useful when learning to understand
a procedure. One could by means of the cursor, highlight an example, copy and paste it to the
R prompt to see what the example does. In this way, the correct syntax of a command may
be quickly learned. Notwithstanding the utility of manual pages which are always present inR
some people like to use a Graphical User Interface (GUI). Thecommand, >help.start()

will start the computer’s web browser to display the manualsfor all the commands inR .

Keeping a record of every command which has been successfully used in aR session in a
separate file is a helpful device in constructing a program. Conversely, the set of recorded com-
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mands which have been copied to a separate file can be highlighted and pasted into the current
or in a newR session. Commands which had been executed are preserved anyway in a file,
.Rhistory , and objects are preserved in the file,.RData which if saved when terminating
anR session, will be incorporated automatically into the nextR session.

Sets of data may exist in ASCII files which can be edited directly by means of an editor
like VI. Sets of data which exist as SAS data files or SPSS data files may be brought into an
R session by means of theread.ssd or read.spss commands. Due to the format of these
types of files, a set of data must either be edited in the parentsoftware system or they may be
edited inR once they have become an object in the currentR session. There exists a GUI inR
for the purpose of modifying data. It is invoked by the command, fix

>fix(x) It is, also, possible to make spot revisions of a data frame ormatrix manually as in

>x[3,2]<-8888
>x

The command,library() , will produce a listing of all the packages ofR which have been
installed on the computer.

>library() There are many libraries which can be retrieved fromcran.r-project.org .
One such useful package isforeign . After it has been installed on the computer, it is brought
into an active session ofR by the command

>library("foreign") To see a listing of all routines which are contained in a library like
foreign use

>help(package="foreign") From the resulting listing, we see that with this libraryR is
capable of bringing the contents of a SPSS or SAS data file intothe current session ofR .

After awhile, the session ofR must eventually be terminated. To do so, enter
>q() By answering in the affirmative whether or not to save the workspace, the next timeR

is invoked, all the objects and functions which were active in the last session will become active
in the next current session. However, an answer ofno will cause all objects to disappear.
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Chapter 3

Graphics

Manipulating vectors, matrices, and data frames in order toanalyze data lies at the heart ofR but
the analysis of data is the easiest part of a statistical or scientific endeavor. Without a question,
the most difficult and expensive part of science is getting the data. The U. S. Government spends
billions of dollars per year in getting data from surveys, experiments, and espionage. Many
thousands of people are employed for the sole purpose of getting data for the benefit of a few
analysts. Analyzing data is relatively easy especially since the advent of the digital electronic
computer. In the end, a report of the experiment and the presentation of the conclusions which
the analysis of the data substantiates must be lucid and wellcomposed. The inclusion of pictures
of the data and graphs of trends in the report are indispensable devices for clarifying concepts.

A simple graph to make is the one of a mathematical function likesin(x) :
>curve(sin(x),-2*pi,2*pi) It is plotted from−2π to 2π. To embellish the picture with

a title, labeled axes, and colored lines of various styles options ofcurve may be used.

>curve(sin(x),-2*pi,2*pi,main="Sine and Cosine Curves" ,xlab="Time",
ylab="Amplitude",col="red",lty=5)
>abline(h=0,col="blue",lty=2)

The syntax ofcurve allows for the specification of the domain ofsin(x) . The color of
the horizontal line is specified bycol="blue" and the dotted style of the horizontal line is
specified bylty=2 . Another function to graph is the cosine function:

>curve(cos(x),-2*pi,2*pi,main="Cosine of Time",xlab=" ",ylab="",yaxt="n",
xaxt="n",col="green",lty=5)

As

a result of settingxlab="" andylab="" , the axes are not labeled. This was done in order to
superimpose the two graphs on each other.

19
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>curve(sin(x),-2*pi,2*pi,main="Sine and Cosine Curves" ,xlab="Time",
ylab="Amplitude",col="red",lty=5)
>par(new=TRUE)
>curve(cos(x),-2*pi,2*pi,xlab="",ylab="",yaxt="n",x axt="n",
col="green",lty=5)
>abline(h=0,col="blue",lty=2)

While at first the commands might seems overwhelming, a more complete description of the
options for use incurve appears in?curve , ?plot , and in?par . The command,par , does
not produce statistics or a graph. It sets the graphical parameters. Graphical parameters may be
specified within a plotting function as was done in making a picture of the sine function with
curve . The other way of setting a graphical parameter is by means ofthe command,par .
When a graphical parameter is set by means ofpar , it is used henceforth for the duration of the
current session ofR unless it is superseded by another use ofpar .

In the description ofpar , there is an option which specifies the seven styles of lines,lty :

Table 3.1: Styles of Lines

0 blank
1 solid
2 dashed
3 dotted
4 dot dash
5 long dash
6 two dash

The options,xlab andylab , allows for the arbitrary use of labels for the x and y axes.
The use ofxaxt="n" specifies that the x-axis must not be plotted. In the example of drawing
a picture of the cosine function,xlab="" andxaxt="n" cause no labelling of the x-axis and
no use of a marked scale. Sometimes keeping the axis blank is useful at the time of superimpos-
ing two graphs. The first instance ofcurve will produce the title, labeling of the axis, and the
image of the first figure, while the second graph will be superimposed on the first. The super-
imposition does not occur automatically. Every time a plotting function likeplot , curve , and
matplot is used,R erases any previous vestige of a plot and starts with a fresh plot. In order
to superimpose two images on the same plot, the commandpar(new=TRUE) must be inserted
in between the two plotting functions as was done above for superimposing a cosine plot onto a
sine plot.

Another and better way to superimpose two graphs is with the use of the option,add=T :
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>curve(sin(x),-2*pi,2*pi,main="Sine and Cosine Curves" ,xlab="Time",
ylab="Amplitude",col="red",lty=5)
>curve(cos(x),-2*pi,2*pi,ylab="",yaxt="n",xaxt="n",
col="green",lty=5,add=TRUE)
>abline(h=0,col="blue",lty=2)

In all of the examples discussed thus far, the plots have beenof mathematical functions for
whichcurve is used. Statisticians like to make pictures of data. By executing apropos("plot")

, the result will prove that there are many commands with which to make pictures of data inR
. Rather than make a graph of a mathematical function, the following examples will make plots
of data. Even though, the set of data upon which the followingplots are based is contrived, the
resulting simplicity of the graphs will bring out more readily features of the commands. For
example,

>x<-sin(-2*pi+(1:100)*pi/50)
>t<-1:100
>plot(t,x)

will produce a plot which will clearly shows the char-

acteristic feature of discrete data. The plotted points of the data can be joined by a smooth line,
if the type option is used in theplot command. >plot(t,x,type="l") The solid line
interpolates the set of points so that it looks as if a mathematical function had been plotted.

Rather than superimpose two mathematical functions on one plot, we will superimpose two
pictures of data on one plot. To that end, discrete values from a cosine function will be assigned
to the object,y .

>y<-cos(-2*pi+(1:100)*pi/50) . When the sine and cosine derived sets of data are placed
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Figure 3.1:

on one plot by: >plot(x,y) a circle appears instead of a superimposed sine and cosine
waves because the values of x and y when plotted together actually represent a parametric ex-
pression of a circle. The desired superimposition of sine and cosine waves is accomplished by
creating two separate plots and then add the second one on topof the first by the use of the
par(new=TRUE) option.

>plot(t,x)
>par(new=TRUE)
>plot(t,y)

This time, the resulting picture as shown in Figure 3.1 is what is wanted. Coincidentally,
both plots are made over the identical scales of the x and y axes. Suppose the axes of the two
plots are not identical as in

>plot(t,x)
>par(new=TRUE)
>plot(t,10*y)

The superimposition of the two plots, however, is a poor one.A remedy

for the mismatching which is cause by this approach in superimposing two graphs can be found
in another approach in which the two sets of data are combinedinto a matrix from which both
functions are drawn in the same graph.

>m<-cbind(x,y)
>plot(m,type="l")

. Once again a circle is produced contrary to our intentions and clearly

shows that this approach is flawed. Nevertheless, there is a special plotting procedure which
makes plots of one column of a matrix against another column.That procedure is calledmatplot .
It will produce the desired superposition of the cosine and sine functions as shown in Figure 3.2.
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>matplot(m,type="l",main="Sine and Cosine Curves",
col=c("red","green"),xlab="Time",ylab="Amplitude")
>abline(h=0,col="blue",lty=2)
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Figure 3.2:

Incorporating a legend into the plot for identifying the twocurves seems appropriate, but
where should it be placed? Thelocator function will produce the co-ordinates at that place
on the plot where the cursor is placed and the left key of the mouse clicked. Two points will be
specified inlocator . One point will coincide with the upper left corner of the legend, and the
second point will coincide with the lower right corner of thelegend. By means of the cursor,
these two points will be used byR to place the legend of the right size in the right place.

>legend(locator(n=2),legend=c("Summer","Winter"),co l=c("red","green"),
lty="1")

. To

see whatlocator produces, execute >locator(n=2) and click when the cursor is where
the upper left and lower right corners of the legend should beplaced. Explicitly,locator
produces co-ordinates. The co-ordinates whichlocator furnishes are automatically utilized
by the legend command. Even though, it is convenient to incorporatelocator directly in the
legend command, putting the actual co-ordinates whichlocator provides into the legend
manually makes it possible to reproduce the plot with the legend in exactly the same position.

>legend(c(49.75750,75.37375),c(0.9460465,0.7325581) ,
legend=c("Sine","Cosine"),col=c("red","green"),lty= "1")

A written report includes graphics, and unless a graph can beprinted on paper it cannot be
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used in a report. A graph which is created byR
>postscript(horizontal=F,file="/tmp/CPI.ps")
>matplot(m,type="l",main="Sine and Cosine Curves",
col=c("red","green"),xlab="Time",ylab="Amplitude")
>abline(h=0„col="blue",lty=2)
>legend(c(49.75750,75.37375),c(0.9460465,0.7325581) ,legend=
c("Sine","Cosine"),col=c("red","green"),lty="1")
>dev.off()

can be saved as was done in the preceding example to a file in a Postscript format which is recog-
nized by modern printers. The last command,dev.off() , in the last set of instructions termi-
nates the use of the graphics device and causes the image to besent to the file,/tmp/CPI.ps .

One of the most popular forms of presenting data for a statistician is the histogram.
>w<-c(83,85,74,70,92,64,72,87,88,75)
>hist(w)

. There are various options inR for producing

histograms with different styles. A histogram which displays the relative frequency is produced
by: >hist(w,prob=T) ; with absolute counts by: >hist(w,prob=F) . The sizes of the
bins may be specified by means of thebreaks option as is done here:

>br<-seq(40,100,5)
>hist(w,breaks=br,prob=T,main="Exam Scores from Watchi ng Videos",xlab="Scores")

It is often desired to superimpose a Normal distribution on ahistogram.
>curve(dnorm(x,mean=mean(w),sd=sd(w)),add=T) .

A Normal distribution is almost always an approximation fora histogram. Perhaps, a binomial
distribution adequately describes the data.

>curve(dbinom(round((x-40)/60*length(w)),length(w),
mean((w-40)/60))/6,40,100,add=T)

In this example, a Bino-

mial distribution was translated so that it is centered on the histogram.R does not know how to
position a Binomial distribution or a Normal distribution without the help of the statistician who
must employ the right mathematical formulas.

Superimposed on top of the histogram, there appear two mathematical functions. They are
dnorm(x) , the probability density function of the standard Normal distribution anddbinom(x) ,
the probability mass function of the Binomial distribution. By entering?dnorm and?dbinom ,
a description of the syntax of each will be displayed. The plot of the Normal distribution is easy
to make because the options are obvious. On the other hand, the task of superimposing the Bi-
nomial distribution on the histogram is difficult and tricky. It hardly comes as a surprise that the
Normal distribution is everyone’s favorite distribution.It is easy, versatile, and fundamental in
the theory of statistics.

In an attempt to make the previous plot less complicated, it will be divided into two graphs
and placed side-by-side.



25

Exam Scores from Watching Videos

Scores

D
en

si
ty

40 50 60 70 80 90 100

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

>par(mfrow=c(1,2))
par(cex.lab=1.5, cex.main=1.5,cex=1.5)
>hist(w,breaks=br,prob=T,main="Exam Scores from Watchi ng Videos",
xlab="Scores",col="red")
>curve(dnorm(x,mean=mean(w),sd=sd(w)),add=T)
>hist(w,breaks=br,prob=T,main="Exam Scores from Watchi ng Videos",
xlab="Scores",col="red")
>curve(dbinom(round((x-40)/60*length(w)),
length(w),mean((w-40)/60))/6,40,100,add=T)

.

The key command for putting two plots side-by-side on the same page is the parameter state-
ment,par(mfrow=c(1,2)) . To put four plots on the same page,par(mfrow=c(2,2)) is
used. Similarly, to put three columns in two rows of plots on the same page,par(mfrow=c(2,3))
is used. To reset the frames so that only one plot appears on a page, use

>par(mfrow=c(1,1))

Suppose another set of data besideswwas obtained and is assigned to the object,x .
>x<-c(95,81,59,68,74,79,72,70,81,58) The set of data contained inw and the set of

data contained inx are obtained in a process which makesw andx independent sets of data.
The set of data inware scores from an examination in understanding French fromstudents who
attend classroom lectures whereasx contains examination scores for proficiency in French from
students who also listened to audio tapes of French. We wish to see the data of both.

>plot(w,x) Some points lie far away from the rest of the data. The commandidentify

will allow us to find which points in the data produced the points of interest in the plot.
>identify(w,x) A more ambitious goal might be to place the names of the pointson the
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Figure 3.3:

plot as a result of identifying some of them as in the following example of identifying four points
and saving the resulting image to a Postscript file,fig8.ps :

>w<-c(83,85,74,70,92,64,72,87,88,75)
>x<-c(95,81,59,68,74,79,72,70,81,58)
names<-c("A","B","C","D","E","F","G","H","I","J")
par(cex.lab=1.5, cex.main=1.5,cex=1.5)
>plot(w,x,main="Scores from Lectures Alone versus Lectur es and Audio Tapes",
xlab="Only Lectures", ylab="Both Lectures and Audio Tapes ")
identify(w,n=4,x,labels=names,plot=T)
dev.print( postscript, horizontal=FALSE, file="fig8.ps " )

After the points have been identified by means of using the cursor, the plot will be saved to
fig8.ps .

3.1 Box Plots

A single box plot is simple to make. Supposew<-c(83,85,74,70,92,64,72,87,88,75) ,
then a box plot of this data can be made by:boxplot(w) .

A useful aspect of boxplots can been seen when a series of box plots are put side-by-side in
the same plot. This arrangement of box plots offers a quick view of the relationship of the sets
of data with each other. The following set of commands will create four box plots of the scores
in French depending on classroom instruction only given inw, the use of only video tapes given
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in w, the use of only audio tapes given iny , and the use of only a textbook given inz .

w <-c(83,85,74,70,92,64,72,87,88,75)
x <-c(95,81,59,68,74,79,72,70,81,58)
y <-c(86,71,49,63,65,72,78,68,85,65)
z <-c(87,61,45,81,72,67,66,51,55,58)
p<-list(w,x,y,z)
boxplot(p,main="Box Plots of French Scores",
ylab="Scores",xlab="",xaxt="n",horizontal=FALSE)
axis(1,at=c(1,2,3,4), labels=c("classroom","video"," audio","text"))

The use of thelist allows the simultaneous plotting of the four box plots in onepicture,
and the use ofaxis puts nice labels on the x-axis at positions 1, 2, 3, and 4, respectively.

3.2 Confidence Intervals

One of the most important concepts in statistics is the confidence interval. For a small enough
population, it might be feasible to obtain all the desired information about it, like the mean and
the variance. Almost always, there is limited time, and there are insufficient financial resources
to examine the entire population. Instead, a sample of the population is usually drawn which, if
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it is done properly, will represent the population in which case the mean of the sample will be
close to the mean of the population, and the variance of the sample will be close to the variance
of the population. The statistics which are derived from a sample cannot except in extremely
rare events be exactly the same as the corresponding statistics of the population. A good sample,
nonetheless, does contain accurate information about the population.

By means of confidence intervals, it is possible to infer somecharacteristics of the population
based on the set of experimental data which was obtained froma sampling of the population. The
length of the confidence interval will indicate the precision of the data, and its location will indi-
cate the likely region which contains the parameter of interest of the population. The importance
of the confidence interval lies in its use to substantiate an inference about the population.

If a very large number of 95 percent confidence intervals are plotted, then, on the average,
95 percent of them will cover the true population mean. We will useR to produce a picture of
twenty 95 percent confidence intervals to illustrate the meaning of confidence intervals.

The example begins by defining a function,ci . Every command after{ and before} be-
longs to the function. A function inR is akin to a sub-routine in FORTRAN or to a module in
SAS/IML. A vector of30*n random numbers is generated from a standard Normal distribution.
The vector,y , is converted into a matrix consisting of 30 rows of n columns. The lower limit of
the 95% confidence interval is

ȳ − tn−1, α

2

s√
n

which will be translated in theR language as:
mean(y)-qt(.975,length(y)-1)*sqrt(var(y)/length(y))
The upper limit is the same except that a+ symbol is used instead of the minus sign.

>ci<-function(n=20){
>y<-matrix(rnorm(30*n,0,1),nrow=30)
>lower<-apply(y,2,function(y)(mean(y)-qt(.975,
length(y)-1)*sqrt(var(y)/length(y))))
>upper<-apply(y,2,function(y)(mean(y)+qt(.975,
length(y)-1)*sqrt(var(y)/length(y))))
>matplot(cbind(lower,upper),type="n",main=
"Twenty 95 percent Confidence Intervals",ylab="Length")
>z1<-cbind(1:n,1:n)
>z2<-cbind(lower,upper)
>matlines(t(z1),t(z2),lty="solid")
>abline(h=0)
>}
>ci()

The last command,ci() , will execute the function which will produce the 20 confidence
intervals.

The trick whichR provides is given by the commandapply . It means that a function is to be
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applied to each record of a column. That is,apply(y,2,function(y){...}) will apply
the function to every column ofy . The command,apply(y,1,function(y){...}) , will
cause the function to be applied to every row ofy . apply is a peculiar though very handy
command whichR inherited from S. There is no corresponding command in FORTRAN or in
SAS/IML, like apply .

The procedure usesmatplot to plot the end points of the twenty confidence intervals on the
plot. Two vectors,z1 andz2 , are created which contain the end points of the twenty confidence
intervals, but the end points are made invisible by the option, type="n" . The x co-ordinates
of the lower and upper limits are contained inz1 and the y co-ordinates for the lower and
upper limits are contained inz2 . The lower and upper limits are connected with a solid line by
means ofmatlines . The true population mean is denoted by the horizontal line created by
abline(h=0) . That 18 out of 20 confidence intervals appear to cover the population mean
substantiates the theory that, on the average, 95% of the confidence intervals will contain the
population mean.
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Chapter 4

Statistics

One can use the basic arithmetic operations ofR to calculate any statistic, but it is not necessary
to re-invent the wheel for calculating elementary statistics whenR contains stored procedures to
perform the common computations. For the many examples of this chapter, the set of data will
be maintained in a data frame. It is a peculiar structure ofR which came from S. A data frame
is a collection of variables which have the same length. Its structure is like an array in which the
elements of a column correspond to the elements of a variable. Some permissible manipulations
of a data frame are like those of an array or matrix, but they cannot be fully extended to matrix
algebra. In order to apply the operations of matrix algebra on data frames, a data frame must be
converted to a matrix. The namedd will be given to the object which will be the data frame of
the following examples. The data frame will be initialized by the command:

>dd<-data.frame() and it will consist of the four variables:

>w<-c(83,85,74,70,92,64,72,87,88,75)
>x<-c(95,81,59,68,74,79,72,70,81,58)
>y<-c(86,71,49,63,65,72,78,68,85,65)
>z<-c(87,61,45,81,72,67,66,51,55,58)

To assemble these four variables into the data

frame, the following command is executed: >dd<-data.frame(w,x,y,z) . The result-

ing structure ofdd can be displayed by >str(dd) . The commandstr() is like the
proc contents procedure of SAS. Although the columns ofdd correspond to the single let-
tered objectsw,x,y,z , names may be assigned to the columns of a data frame by thenames()
command so that, for convenience, they will be inherited in the output of subsequent procedures:

>names(dd)<-c("classroom","video","audio","text") >str(dd) will show the

contents of the modified data frame,dd , and >summary(dd) will produce descriptive statis-
tics for all four objects at once. Let us verify some of the statistics.

>mean(dd)
>var(dd)

Data frames and matrices are not the same even though data frames can be ma-
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nipulated, in some ways, as if they were matrices. To see someof the differences between them,
we will compare, in the following set of commands, data frames and matrices. The data frame,
dd , will be converted into the matrix,m, by >m<-as.matrix(dd) .

Table 4.1: Comparison between a Data Frame and a Matrix

Data Frame Matrix Comments

cor(dd) cor(m) No Difference

hist(dd) hist(m) Fails for dd; histogram of union of values of m

plot(dd) plot(m)
(
n

2

)
plots for dd; one plot for all values of m

matplot(dd,type="l") matplot(m,type="l") No Difference

barplot(dd) barplot(m) Fails for dd, four plots for m

The following examples illustrate the use of producing column and row sums of a table.
To take a tally by row: >margin.table(m,1) ; and by column: >margin.table(m,2) .
The numeral 1 specifies that the operation be performed by rows, and 2 specifies by columns. The
prop.table command gives the proportions by row or by column according to the option 1 or
2 as in: >prop.table(m,1) for proportions across columns per row or>prop.table(m,2)

for proportions across rows per column.

In degree of popularity, the method of least squares commands a preeminent role among the
stored procedures inR . Special features of thelm command will be discussed in more detail in
Chapter 5 which addresses advanced procedures.lm is but one procedure inR which deals with
linear models. To illustrate its use, the next examples willbe based on the problem of fitting a
linear modelclassroom = β0 + β1video + β2audio + β3text + ǫ whereǫ ∼ N(0, σ2). The
set of data already exists in the data frame,dd , so that thelm() may immediately be applied
to it. >lm(dd) Under the heading ofCoefficients , the estimatesβ0 = 64.39754,
β1 = 0.50043, β2 = −0.05749, andβ3 = −0.28372 appear. The same results are produced in
the following equivalent formulation. >lm(w ∼x+y+z) .

The syntax which represents the model has the form:w∼x+y+z . All the necessary infor-
mation for performing an analysis of variance is contained in the output of thelm and can be
passed to a subsequent procedure likeanova() : >anova(lm(w ∼x+y+z)) . Rather than
type the command,lm(w ∼x+y+z) , many times over again, thelm procedure can be assigned
to an object such as: >w.lm<-lm(w ∼x+y+z) While expressed as an object, the output
of the lm procedure can be easily analyzed by means of applying various utilities to it, like:

>anova(w.lm) . In the case of >fitted(w.lm) , this procedure produces the fitted val-
ues of the linear model while theresid procedure will produce the residuals of the linear
model: >resid(w.lm) . These two procedures make it easy to produce the very important
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diagnostic plot of residuals versus predicted values to help determine whether or not the model
is a good model.

>plot(fitted(w.lm),resid(w.lm),main="Residuals versu s Predicted Values",
xlab="Predicted Values", ylab="Residuals")
>abline(h=0)
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Various tests can be performed on the data like the one of testing the hypothesis that the mean
equals 80 at a level of confidence of 95%>t.test(w,mean=80) The lower limit and upper
limit of a confidence interval can be found by following the appropriate mathematical formulas
for producing the lower and upper limits of a confidence interval as was done in Chapter 3 page
28.

>mean(w)-sqrt(var(w)/length(w))*qt(.975,length(w)-1 )
>mean(w)+sqrt(var(w)/length(w))*qt(.975,length(w)-1 )

Or the same thing can immediately be done by means of thet.test command:
>t.test(w,conf.level=.95)

Both methods give the same results; their use depends on the predilection of the analyst.

Data frames can also be used to calculate confidence intervals. For example, confidence in-
tervals at a level of confidence of 97% can be produced by:

>t.test(dd$classroom,conf.level=.97)
>t.test(dd$video,conf.level=.97)
>t.test(dd$audio,conf.level=.97)
>t.test(dd$text,conf.level=.97)

However, the easy way of performing this procedure repetitively according to each variable of
the data frame is to execute theapply command ont.test either by columns:



34 CHAPTER 4. STATISTICS

>apply(dd,2,t.test) or by rows: >apply(dd,1,t.test) . In so doing, confidence
intervals for each of the four variables:classroom, video, audio, text will be pro-
duced. The output of the command,apply , will be saved to the object,colci as in:

>colci<-apply(dd,2,t.test,conf.level=.97)

Besides the data frame,R has an entity called thelist which is a collection of objects. That
colci is a list can be verified as follows: >is.list(colci) which returns an affirmative

answer. The contents ofcolci is displayed by: >str(colci) , and it shows thatcoldi

contains information about each of the four variables. Having extracted information pertaining
to a specific variable likeclassroom : >colci$classroom ,

colci$classroom

One Sample t-test

data: newX[, i]
t = 27.1501, df = 9, p-value = 6.045e-10
alternative hypothesis: true mean is not equal to 0
97 percent confidence interval:

71.51086 86.48914
sample estimates:
mean of x

79

we see that the list,colci contains everything that was gotten byt.test when it was invoked
only on classroom, i.e. >t.test(dd$classroom,conf.level=.97)

One Sample t-test

data: dd$classroom
t = 27.1501, df = 9, p-value = 6.045e-10
alternative hypothesis: true mean is not equal to 0
97 percent confidence interval:

71.51086 86.48914
sample estimates:
mean of x

79

There are many ways to obtain the same answer, inR . Some procedures are performed so
often that they are given names liket.test . In order to save time, the writing of data frames
allows an analyst to process a collection of objects altogether, andlist allows one to collect
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Figure 4.1: Empirical Cumulative Distributions and Histogram

the output into one name from which the pertinent information can be extracted according to the
name of a column in the data frame.

The need to find quantiles and probabilities inR is easy to achieve. For example to find the t
quantile,t9,.025, one will use >qt(.975,9) . Conversely, to find the probability

P (t9 < 2.262157), >pt(2.262157,9) can be used. Or if four random numbers are needed,

they can be generated from a t distribution with 9 degrees of freedom by using: >rt(4,9) .

Four random numbers from a standard Normal distribution canbe obtained by >rnorm(4)

or >rnorm(4,mean=0,sd=1) . The z quantile,z.025 is obtained by >qnorm(.975) , and

the probabilityP (z < −1.959964) is >pnorm(-1.959964) .

There are similar commands for other distributions, for instance, to produce 10 random num-
bers from a Uniform distribution,U(2, 9), runif is used: >x<-runif(10,2,9) . Suppose
that these generated numbers are given, one might wonder if they could actually be random and
can represent a Uniform distribution in a Monte Carlo technique. The making of a picture will
help in satisfying a statisticians curiosity. To that end, apicture of the empirical cumulative dis-
tribution function of these 10 random numbers, might be revealing. It is necessary, at first, to
invoke the library,stepfun , as follows:

>library("stepfun")
>plot(ecdf(x))
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The empirical cumulative probability function as displayed in Figure 4.1 looks linear enough
to support the assertion that the random numbers came from a Uniform distribution. Further-
more, a histogram of the same data bears a resemblance to the density function of a Uniform
distribution: hist(x, main="Histogram of 10 Random Numbers \n from U(2,9)") .
By increasing the number of random numbers, the resemblanceto a Uniform distribution be-
comes more apparent:

x<-runif(100000,2,9)
par(cex.lab=1.5, cex.main=1.5,cex=1.5)
hist(x,ylim=c(0,.28),breaks=1:10,border="white",col ="gray",prob=TRUE,main="")
title("Histogram of 100000 Random Numbers \n")
title( cex.main=1.25, "from U(2,9)")
axis(1,0:10)

and it serves as a good illustration of a problem with Monte Carlo techniques in deciding how
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many random numbers is sufficient to create a good empirical distribution function.

Suppose that 100 random numbers are generated from a N(10,32)
>y<-rnorm(100,10,3)
par(cex.lab=1.5, cex.main=1.5,cex=1.5)
plot(ecdf(y),main="" )
title("Empirical Cumulative Distribution \n")
title( cex.main=1.25, "of 100 Random Numbers from N(10,9) " )

plot(density(y), main="",xlab="",ylab="" )
title("Empirical Probability Function \n")

title( cex.main=1.25, "of 100 Random Numbers from N(10,9) " )
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The plot of the empirical distribution function shows a weakresemblance to a Normal distri-
bution. Yet, statisticians often compare data against a Normal distribution to evaluate the claim
that the set of data can be explained by a Normal distribution. Because the values ofy were
chosen at random from a N(10,9), a probability plot ofy should be linear. In comparison, the
values ofx which were taken from a U(2,9) should produce a probability plot far from linear.
Drawing probability plots which are also called qq plots as shown in Figure 4.2 agree with our
expectations that the set of random numbers which were generated from a Normal distribution
does produce a fairly straight line while those random numbers from a Uniform distribution do
not produce a straight qq plot.

par(cex.lab=1.5, cex.main=1.5,cex=1.5)
qqnorm(y, main="")
title("qq plot of 100 random numbers \n");title(cex.main=1.25,"from n(10,9)")
qqnorm(x, main="")
title("qq Plot of 100 Random Numbers \n");title(cex.main=1.25,"from U(2,9)")
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Chapter 5

Advanced Procedures and Tricks

We will begin this chapter by applying the method of least squares to the problem of estimating
parameters of a linear model in two different but equivalentways. In the first case, the estimates
will be determined directly from the theoretical formulation of the problem. In the second ap-
proach, estimates will be produced by stored procedures which are found inR for linear models
and their accuracy will be verified by the manual computations from theory.

If it is the goal to compose a program which is as parsimoniousas possible, in order to
achieve a certain sense of elegance, then clever use of stored procedures must certainly be used.
On the other hand, sometimes a less than parsimonious program, while not elegant, might be
better for making the logic of the program more comprehensible.

Let us examine the price of Ford common stock per share as a function of the exchange rate
for Japanese Yen, Euro, and the Standard and Poors (S&P), index as of the beginning of the year.
According to theory, the higher the exchange rate of yen per dollar or euro per dollar rises, the
more affordable Ford automobiles become relative to Japanese and German imported cars and
therefore the greater the demand for Ford common stock.

>year<-c(1992,1993,1994,1995,1996,1997,1998,1999)
>ford<-c(38.38,52,58.75,26.88,34.38,23.02,45.81,63. 94)
>yen<-c(133.2,121,103.2,89.4,106.3,124.1,132.1,120. 4)
>eu<-c(1.64,1.61,1.67,1.38,1.48,1.68,1.85,.93)
>poors<-c(407.36,450.16,463.81,493.15,647.07,757.12 ,1101.75,1286.37)
>dd<-data.frame(year,ford,yen,eu,poors)
>names(dd)<-c("Year","Ford","Yen","EU","SP")

The first order of business in analyzing a set of data is to makea picture of the data. If the
theory is correct, there should appear discernible patterns between the variables and the price of
Ford stock. >plot(dd)

39
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No simple functional relationship is apparent between the price of Ford stock and the other
variables of interest upon inspecting the plot of the data. As a result, a statistical analysis of the
data will probably produce no useful information, nonetheless, let us assert a linear model like
the following:

ford = yi = β0 + β1 yen + β2 eu + β3 sp + ǫ

whereǫ ∼ N(0, σ2). It says that the price of Ford stock can be described by a linear combination
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of the exchange rates of Yen and Euro and the level of Standard& Poors 500 Index. The linear
model can be written more compactly as:

Y = Xβ + ǫ

In terms of the data, the model appears as the following:




38.38
52

58.75
26.88
34.38
23.02
45.81
63.94




=




1 133.2 1.64 407.36
1 121 1.61 450.16
1 103.2 1.67 463.81
1 89.4 1.38 493.15
1 106.3 1.48 647.07
1 124.1 1.68 757.12
1 132.1 1.85 1101.75
1 120.4 .93 1286.37







β0

β1

β2

β3


 +




ǫ1

ǫ2

ǫ3

ǫ4

ǫ5

ǫ6

ǫ7

ǫ8




(5.1)

In the theory of statistical linear models,Y, is usually called theresponse variableand the
variables,yen , eu , andsp are called the explanatory variables. Some authors might call them
the predictor variables and others might call them the independent variables. The matrix,X, is
called the design matrix. We will use the design matrix and the vector of the response variable in
R to calculate the estimate of the vector of parameters,β. The design matrix must be constructed
from the data.

We will use three approaches to construct the design matrix.Constructing the vector of data
for the response variable is easy:

>y<-dd$Ford

1. The most logical approach to construct the design matrix would be to append a vector of
all 1’s to the second through fourth columns of the data frame, dd , as in:

>x<-cbind(rep(1,length(y)),as.matrix(dd[,3:5])) The vector of all 1’s is
produced byrep(1,length(y)) . The second through fourth columns of the data
frame,dd , are converted into a matrix by means of the command,as.matrix() . Then
both components are put together by thecbind command to form the design matrix.

2. A simpler approach is to exploit a trick by whichR will repeatedly cycle through a short
vector until the operation is done. Instead of creating a vector of 1’s which is congruent
in dimension with the matrix which was created fromdd , the vector of a single element
is used so that asR combines the two vectors, it will cycle through the short oneuntil the
cbind operation is completed. It is a feature ofR which, although it is different from our
accustomed way of reasoning, will make the program more parsimonious.

>x<-cbind(1,as.matrix(dd[,3:5]))
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3. A third approach utilizes a special command inR for producing the design matrix namely:
>x<-model.matrix(Ford ∼Yen+EU+SP,data=dd) This command was written if full

detail; however, if the data frame is attached, its variables will automatically be present so
that the data frame need not be mentioned. For convenience, adata frame can be brought
into the memory of the current session ofR by means of the command,attach , as in:

>attach(dd) Because the data frame is attached to the current workspace,it will be
included in the search path ofR therefore, themodel.matrix command could have
been written without reference to the data frame,dd :

>x<-model.matrix(Ford ∼Yen+EU+SP) When the data frame is no longer needed,
thendetach(dd) will remove it from the search mechanism of the current workspace.

From the theory of numerical analysis where statisticians have taken the method of least
squares, thatβ which minimizes the sum of squared errors, SSE, correspondsto that line which

best fits the data. By imposing the condition thatSSE =
n∑

i=1

ǫ2

i be a minimum and the assump-

tion thatǫ ∼ N(0, σ2), the unbiased estimator ofβ can be written in matrix form as:

β̂ = (X′X)−1X′Y (5.2)

This equation constitutes the most important formula in thetheory of linear models, and for our
purposes it gives the recipe for calculatingβ̂. The key command is the one for inverting the
matrixX′X which in R is done bysolve() :

>solve(t(x)%*%x)%*%t(x)%*%y

[,1]
(Intercept) 42.066649253

Yen 0.208504528
EU -17.800308422
SP 0.005467642

The command,%*%, is matrix multiplication;t() is the transpose operator. For reference
later, the least squares estimates will be saved to the object, betahat .

>betahat<-solve(t(x)%*%x)%*%t(x)%*%y
>betahat

(Intercept) 42.066649253
Yen 0.208504528
EU -17.800308422
SP 0.005467642
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Although the mathematical formula for̂β can be used as a recipe to do the computation, the
use of linear models is such a popular technique in statistics, a procedure called,lm , already
exists inR which will produce estimates of a linear model. The same estimates which have been
assigned tobetahat can also be produced by: >lm(Ford ∼Yen+EU+SP,data=dd) and the
results are shown below:

Call:
lm(formula = Ford ~ Yen + EU + SP)

Coefficients:
(Intercept) Yen EU SP

42.066649 0.208505 -17.800308 0.005468

or because the data framedd had been already attached by the command,attach(dd) , it is
sufficient to write:

>lm(Ford ∼Yen+EU+SP)

The formula which appears in thelm command looks like the mathematical expression for
the linear model except that reference to theβ’s is missing. This formulation is the typical
way to write a model inR . Whether to produce the estimates by thelm procedure or by the
mathematical formula for̂β is a matter or personal preference. The advantage of using a stored
procedure likelm is that it produces a package of other useful statistics.

What separates numerical analysis and statistics is the assumption which statisticians make
thatǫi is a random variable. By virtue of that assumption, confidence intervals and the testing of
hypotheses can be made to substantiate an inference which isdrawn from the data. In conjunction
with the lm command inR , there are additional procedures which address various topics of
inference. For example, the composition ofsummary() with lm() functions will produce
standard computations for linear models.

>summary(lm(Ford ∼Yen+EU+SP))

Call:
lm(formula = Ford ~ Yen + EU + SP)

Residuals:
1 2 3 4 5 6 7 8

-4.494 10.901 22.356 -11.959 -7.044 -19.157 3.106 6.290

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 42.066649 57.148186 0.736 0.503
Yen 0.208505 0.542683 0.384 0.720
EU -17.800308 30.459085 -0.584 0.590
SP 0.005468 0.026440 0.207 0.846

Residual standard error: 17.66 on 4 degrees of freedom
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Multiple R-Squared: 0.1845, Adjusted R-squared: -0.427
F-statistic: 0.3017 on 3 and 4 DF, p-value: 0.8238

From thesummary() command there appears a list of the residuals of the model, estimates of
eachβ along with sufficient information to construct confidence intervals for each of them, and
the F test statistic for testing the hypothesisH0 : β1 = β2 = β3 = 0 vs H1 : otherwise. The
results of thelm procedure may be preserved in an object likestock.lm .

>stock.lm<-lm(Ford ∼Yen+EU+SP)
>summary(stock.lm)

. Having applied thesummary() command to the ob-

ject,stock.lm , the same results are produced as was printed by means oflm(Ford~Yen+EU+SP)
alone. Other commands likeanova can be applied to the objectstock.lm . In the case of
anova , the analysis of variance (ANOVA) table will be printed.

>anova(stock.lm)

Analysis of Variance Table

Response: Ford
Df Sum Sq Mean Sq F value Pr(>F)

Yen 1 38.97 38.97 0.1249 0.7416
EU 1 230.05 230.05 0.7375 0.4389
SP 1 13.34 13.34 0.0428 0.8463
Residuals 4 1247.69 311.92

Entries in the ANOVA table confirm that for all practical purposes,β1 = β2 = β3 = 0. The
price of Ford stock cannot be predicted by the proposed modelbased on the available data. Not
only must a statistician consider the F test statistic in evaluating the adequacy of a linear model,
but he needs to examine the plot of residuals versus predicted values. The object,stock.lm ,
contains all the usual information associated with the estimation of the parameters of a linear
model.

It is possible to produce predicted values by following the mathematical formula:xβ̂ or by
applying the stored procedurepredict() or fitted() on the object,stock.lm as was
first explained on page 32:

>predict(stock.lm) . Similarly, the residuals can be produced by following the mathemat-

ical formula,y−xβ̂, which when written inR is: >y-x%*%betahat or more conveniently by

applying the stored procedure,resid() , on the object,stock.lm : >resid(stock.lm) .
Having the residual values and predicted values in hand, a plot of them will show if there is flaw
in the model.

>plot(predict(stock.lm),resid(stock.lm),main="Resid uals vs Predicted Values")
>abline(h=0)

By inspecting the plot of residuals versus predicted values,
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there does appear to be a pattern in the residuals versus predicted values, consequently, the
formulation of the model must be flawed.

Based on this exercise, we see that there is more than one way to solve a problem. One
may use, on the one hand, the basic arithmetic and matrix algebra capabilities ofR while fol-
lowing a mathematical formula or one may use stored procedures which are provided inR .
The stored procedures are convenient when studying common statistical problems. Most of the
time, problems are not standard ones especially when doing research, so that it usually is neces-
sary to compose unique functions for the given problem whichmeans that a good mathematical
formulation of the problem must have already been developed. Sometimes clever use of stored
programs although the original intention of designing themmight not solve the problem com-
pletely can nonetheless improve the efficiency of a custom designed program.

Table 5.1:Analysis of Variance for Fitting Regression for the GeneralLinear Model
Source of Variation df Sum of Squares Mean Sum of Squares F statistic

Mean 1 SSM = nȳ2

Regression r-1 SSR(m) = dβm
′

Xm

′
Y MSR =

SSR(m)

r−1
F =

MSR

MSSE

Residual Error n-r SSE=SST-SSM-SSR(m)
cσ2 = MSSE =

SSE

n−r

Total n SST =

nP
i=1

y2
i

In the next few commands, we will verify the computations of thelm procedure by comput-
ing each entry in the ANOVA table and the confidence intervalsof eachβi. The mathematical
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formulas of the ANOVA table are shown in Table 5.1. By means ofthese formulas, the entries
of the ANOVA table will be produced and compared with the respective results of thelm proce-
dure. The ANOVA table is reproduced below in Table 5.2 in which the corresponding commands
in R are written.

Table 5.2:Formulas for Analysis of Variance Written in R

Source of df Sum of Squares Mean Sum of Squares F statistic

Variation

Mean 1 SSM<-nrow(x)*mean(y) ∧2

Regression ncol(x)-1 SSRm<-t(bhatm)%*%t(tx)%*%y MSSRm<-SSRm/(ncol(x)-1) Fm<-MSSRm/MSSE

Residual Error nrow(x)-ncol(x) sum(resid(stock.lm) ∧2) MSSE<-SSE/(nrow(x)-ncol(x))

Total nrow(x) sum(y ∧2)

To test the hypothesis thatH0 : β1 = β2 = β3 = 0 vs H1 : otherwise, there is usually no
interest in the significance of the intercept,β0. Rather, the significance of the other coefficients
of the linear model commands attention. To removeβ0 from consideration in the ANOVA table,
the entries are corrected for the mean. To that end, we will construct a vector which contains
only the means of variables, Yen, EU, and SP.>mu<-rep(mean(dd[,3:5]),each=8,1)

Here we see a new option in using therep procedure, namely the optioneach . Each mean
will be repeated 8 times and each group of 8 repetitions will be repeated only once. Another but
more tedious way to constructµ would be to construct a3× 8 matrix and assign the appropriate
mean to each cell of the matrix. Having had constructedmu, the design matrix must be corrected
for the mean by subtracting the mean from each element. Because the information provided by
the means is now dispersed throughout the design matrix, thecolumn of 1’s which is no longer
needed will be omitted.

This new design matrix which must be corrected for the mean can be constructed from the
original data frame,dd , by subtractingmu from each element and by omitting the inclusion of
the column of 1’s as in:

>xm<-as.matrix(dd[,3:5])-mu
>xm

The revised design matrix which has been corrected for the mean now can be used to estimate
the parameters of the model other than the intercept,β0, about which we are not interested.

>bhatm<-solve(t(xm)%*%xm)%*%t(xm)%*%y
bhatm

A comparison of̂β with β̂m verifies that the stored procedure,lm , produces the same esti-
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mates as required. >bhatm
>betahat

Table 5.3: Comparison of Estimates from lm and the Equations

Denomination lm (X′
X)

−1
X

′
Y

(Intercepts) 42.066649 —

Yen 0.208505 0.208504528

EU -17.800308 -17.800308422

SP 0.005468 0.005467642

It is obvious that thatbetahat andbhatm are the same except that̂β0 or what is called
the intercept is missing frombhatm . The rest of the entries in the ANOVA table can be easily
computed usingR .

>SSRm<-t(bhatm)%*%t(tx)%*%y
>MSSRm<-SSRm/(ncol(x)-1)
>Fm<-MSSRm/MSSE

The value of the F test statistic which corresponds to the design matrix corrected for the
mean is the same as the F test statistic which was produced from summary(stock.lm) .

>Fm

[,1]
[1,] 0.3017437

>summary(stock.lm)

Call:
lm(formula = Ford ~ Yen + EU + SP)

Residuals:
1 2 3 4 5 6 7 8

-4.494 10.901 22.356 -11.959 -7.044 -19.157 3.106 6.290

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 42.066649 57.148186 0.736 0.503
Yen 0.208505 0.542683 0.384 0.720
EU -17.800308 30.459085 -0.584 0.590
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SP 0.005468 0.026440 0.207 0.846

Residual standard error: 17.66 on 4 degrees of freedom
Multiple R-Squared: 0.1845, Adjusted R-squared: -0.427
F-statistic: 0.3017 on 3 and 4 DF, p-value: 0.8238

Having verified that thelm produces the correct F test statistic, should one go throughthe
trouble of writing an independent program to produce a statistic which a stored procedure in
R can already do? No computer program should ever be trusted. It is always prudent to verify
that a computer program functions correctly either by reproducing the results by an independent
method as we have done here or by using a set of canned data for which the exact answer
is known and compare the results of the computer program withthe exact results. A highly
desirable feature ofR is that it is licensed under the GPL so that the logic of the of any procedure
of R can be examined and studied at anytime by anyone. If an error should be discovered in the
source code, it can be announced and a solution, if one was found can be submitted to the
developers ofR for their consideration.

Besides verifying the accuracy of the ANOVA table, the accuracy of the the confidence
intervals for theβ’s which thelm() procedure produces will also be verified. Accordingly, the
diagonal elements,aii, of the inverse matrix ofX′X must be computed, in order to determine
the lower and upper limits of the confidence interval. The appropriate formula for a particularβi

is
β̂i ± σ̂tn−r, α

2

√
aii

The diagonal elements of(X′X)−1 are obtained by means of the command:diag() .
>a<-diag(solve(t(x)%*%x))
>lower<-betahat-rep(sqrt(MSSE)*qt(.95,6),4)*as.matr ix(sqrt(a))
>upper<-betahat+rep(sqrt(MSSE)*qt(.95,6),4)*as.matr ix(sqrt(a))
>ci.beta<-cbind(lower,upper)
>colnames(ci.beta)<-c("lower","upper")
>ci.beta

lower upper
-68.98257581 153.11587431

Yen -0.84602579 1.26303484
EU -76.98780055 41.38718370
SP -0.04590937 0.05684466

All the confidence intervals straddle 0 and, in so doing, confirm that the F test statistic of
0.3017437 implies that the hypothesis,H0 : β1 = β2 = β3 = 0 , cannot be rejected un-
less the level of significance exceeds the p-value of :

>1-pf(.3017437,3,4)

[1] 0.8237515
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which is exactly what was produced bysummary(stock.lm) . A typical level of significance
by tradition is .05; therefore, the current set of data strongly invalidates the model and until an-
other set of data is obtained it appears that the proposed linear model does not account for the
price of Ford stock.

The test statistic,T =
bβi

bσ
√

aii
, is used for testing the hypothesisH0 : βi = 0 vs H1 : βi 6= 0 is

the following:
>T<-betahat/(sqrt(a)*sqrt(MSSE))
>T

[,1]
(Intercept) 0.7360977
Yen 0.3842107
EU -0.5844006
SP 0.2067970

These values of T agree exactly with the values produced by the lm procedure under the column,
t value .

>summary(stock.lm)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 42.066649 57.148186 0.736 0.503
Yen 0.208505 0.542683 0.384 0.720
EU -17.800308 30.459085 -0.584 0.590
SP 0.005468 0.026440 0.207 0.846

From the same procedure, the last column represents the p-values for testingH0 : βi = 0 vs H1 :
βi 6= 0. The p-value is for a two-sided test like the one with which wehave been using. It is
defined to be:p = 2P (tn−1 > T ). For example, >p<-2*(1-pt(abs(T),4)) where 4 is the
degrees of freedom. In conclusion, we reproduced the essential results of thelm procedure and
hence verified that thelm procedure produced the correct statistics.

In regard to the foregoing discussion, a noteworthy characteristic ofX′X is that it is a sym-
metric real matrix; therefore, according to the theory of linear algebra it can be expressed by a
sum of its eigenvectors and eigenvalues. The command,eigen() , will produce the eigenvalues
and eigenvectors of a symmetric real matrix. For instance,>eigen(t(x)%*%x) . It produces
a list of two components, values and vectors. In fact,

>str(eigen(t(x)%*%x)) confirms thateigen produces a list and a component is ex-
tracted in the usual way with $:

>val<-eigen(t(x)%*%x)$values
>vec<-eigen(t(x)%*%x)$vectors
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According to the theory of linear algebra,

X ′X =
∑

i

λieie
′
i

whereλi is an eigenvalue andei is its associated eigenvector, or in terms ofR
>val[1]*vec[,1]%*%t(vec[,1])+val[2]*vec[,2]%*%t(vec [,2])+
val[3]*vec[,3]%*%t(vec[,3])+val[4]*vec[,4]%*%t(vec[ ,4])

will, when executed,

produceX′X as it should. To eliminate the tedious job of typing many repetitive commands, a
loop can be employed:

>tx<-0
>i<-1
>while(i<=4){
>tx<-tx+val[i]*vec[,i]%*%t(vec[,i])
>i<-i+1
>}

The first two lines set the initial values forw, the answer, andi the index in the looping mech-
anism. As long asi is less than or equal to 4, the loop will continue. With each iteration of
the loop, the index,i , is incremented by 1. Eventually,i will exceed 4 and the loop will ter-
minate. Actual computation which is saved intx gotten by following the theoretical decompo-
sition of symmetric matrix produces the original matrix,X ′X: The displays of >tx and

>t(x)%*%x show that they are identical.

The commandwhile belongs to a family of commands which is known as control language.
Statements for conditioning on certain criteria, loops, and functions will be discussed in the next
chapter.
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Control Language

A function is toR what a sub-routine is to FORTRAN and a module is to SAS/IML. The form
of a function looks likefunction(x,y,z) where x, y, and z are arguments and the values
which are assigned to them are passed to the contents of the function. For example, the following
function will convert yen to dollar:

yen2dol<-function(yen,exc){
dol<-exc*yen
return(dol)
}

The variable,exc , is the exchange rate in dollars per yen. After the function has been defined,
then its use is simple. The functionyen2dol() will convert ¥50000 to dollars at an exchange
rate of $/¥=1/110:

>yen2dol(50000,1/110)

[1] 454.5455

Suppose we had several amounts of yen like ¥100, ¥50000, and ¥97625800, then an application
of the functionyen2dol will do the conversion.

>yen2dol(c(100,50000,97625800),1/110)

>[1] 9.090909e-01 4.545455e+02 8.875000e+04

If the result which is expressed as it is in scientific notation is not deemed presentable, then to
make the results more attractive, we will use the command,prettyNum , with the option to
insert a comma to separate groups of three digits.

>prettyNum(yen2dol(c(100,50000,97625800),1/110),big .mark=",")

[1] "0.9090909" "454.5455" "887,507.3"

We can do even better by affixing the dollar symbol to the results by means of the paste com-
mand. The paste command is a useful device to combine lettersand symbols together to form
names.

51
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>paste("$",prettyNum(yen2dol(c(100,50000,97625800), 1/110),big.mark=","),sep="")

$0.9090909 $454.5455 $887,507.3

An even prettier result can be produced with thecat command. In the event that there might
be a large list of values of yen which one would like to convertto dollars, afor loop could be
employed. It will iterate through the list of values until all the conversions have been done.

Y<-c(100,50000,97625800)
for (x in Y){
cat("¥",prettyNum(x,big.mark=",")," is ","$",
prettyNum(round(yen2dol(x,1/110),2),big.mark=",")," .",sep=""," \ n")
}

¥100 is $0.91.
¥50,000 is $454.55.
¥97,625,800 is $887,507.3.

(On a keyboard when working on a Linux computer, pressshift-alt \% , to make the yen
symbol, ¥).

The for loop usesx as an index which assumes at each iteration of the loop a valuein the
vector,Y, which the function,yen2dol converts to dollars. The result ofyen2dol is rounded
to two decimal places by theround(,2) command and then the result of that rounding is
made pretty by theprettyNum command. Finally, the pretty result is concatenated together
with ¥, the value of the yen, the wordis, and then the value of the dollar in one step. Still,
another improvement to thefor loop can be made by making a single and succinct command to
do everything that has already prescribed. The following function,y2d() , will include all the
pertinent commands and can be applied to a large list of figures to convert at a given exchange
rate.

y2d<-function(Y,exc){
for (x in Y){
cat("¥",prettyNum(x,big.mark=",")," is ","$",
prettyNum(round(yen2dol(x,1/exc),2),big.mark=",")," .",sep=""," \n")
}
}
>y2d(Y,110)

This is an example of nested functions where the index of afor loop is evaluated by another
function until the loop terminates. It might be desirable toconvert a large set of values in yen to
dollars. The set might be in an text file. If it can be brought into the current workspace and the
functiony2d can be applied to it, then the conversion will be easy. If ASCII file like yen.txt
has been created with the values: 200 300 400 500 600 700 800, then the contents ofyen.txt
is brought intoR by means of theread.table command as follows:

>Y<-read.table(file="yen.txt")
>str(Y)
>Y

The function,y2d , will convert all the values contained inY to dollars.
>y2d(Y)
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¥200 is $1.82.
¥300 is $2.73.
¥400 is $3.64.
¥500 is $4.55.
¥600 is $5.45.
¥700 is $6.36.
¥800 is $7.27.

Similar in purpose to thefor loop is thewhile loop. This loop will continue to iterate until the
condition which is specified in it is satisfied. For example, 20 values of yen in multiple values of
1000 can be converted through awhile loop.

i<-1
while (i <=20){
cat("¥",prettyNum(i*1000,big.mark=",")," is ","$",
prettyNum(round(yen2dol(i*1000,1/110),2),big.mark=" ,"),".",sep=""," \n")
i<-i+1
}

An important command for control the progress of a program isthe conditional which is initiated
by the familiarif statement. For example,

x<-c(0,2,4,6,8)
y<-c(1,3,5,7,9)
i<-1
while(i<=10){
if (i%%2==0){

cat(i, "is an even number"," \n")
}

if (i%%2==1){
cat(i, "is an odd number"," \n")
}

i<-i+1
}

Note that the logical equal symbol,==, is used to describe the condition which theif statement
must evaluate before the subsequent command will be executed. Recall that the%%is the symbol
for modulo, so thati%%2 is equal to 0 ifi is even, andi%%2 is equal to 1 ifi is odd.
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Chapter 7

Application to Finance

7.1 Monte Carlo Simulation

In an asset price process, the price of an asset is given by thestochastic differential equation
known as a stochastic volatility model:

dS = κ(µ − S)dt + σSdW

wheredW (t) is a Weiner process,σ is the volatility, µ is the effective return of S,κ is the
speed of adjustment or reversion to the mean. A Monte Carlo technique can be used to solve this
differential equation by numerical techniques. The differential equation must first be written in a
form which will use discrete increments in the variables. Tothat end, we will use the following
equation in the Monte Carlo simulation:

△S = Si − Si−1 = µSi−1△t + σSi−1ǫi

√
△t

Suppose the price path isS0, S1, S2, ... ,S100, for example. Values ofǫi will come from a ran-
dom number generator for a Standard Normal distribution,rnorm . We will call△t by the name,
deltat ,△S will be called,deltas , and the names of rest of the symbols will be evident. For
an initial price of s0=62, s1 can be found as follows:

Stage 1. Simple beginning.

mu<-.15
sigma<-.15
deltat<-1/360
s0<-62
deltas<-mu*s0*deltat+sigma*s0*rnorm(1)*sqrt(deltat)
s1<-s0+deltas

55
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>s1

Stage 2. Producing a price path for 100 periods with afor loop.
s<-numeric()
mu<-.15
sigma<-.15
deltat<-1/360
s0<-62
for (i in 1:100){
deltas<-mu*s0*deltat+sigma*s0*rnorm(1)*sqrt(deltat)
s1<-s0+deltas
s2<-cbind(i,deltas,s1)
s<-rbind(s,s2)
s0<-s1
i<-i+1
}

>s will show all 100 values of the price path, and a picture of them appears in Figure
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Figure 7.1:

7.1. In the program, we notice that thatrbind command appends the new value of S
onto the bottom of the previously computed values of S. The vectors is initialized by the
commandnumeric otherwise when the program is run agains will contain 200 residual
entries from the previous run. Nothing is more impressive that a picture of the price path.
Therefore, the commands which were used to make the plot of the simulated stock price
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appearing in Figure 7.1 are:
>plot(s[,1],s[,3],type="l")
>abline(h=62)

Stage 3. The function,price , and enhancements to the graph.
price<-function(mu,sigma,deltat,s0,n,graph=0){
s00<-s0
s<-cbind(0,0,s0)
i<-1
for (i in 1:n){
deltas<-mu*s0*deltat+sigma*s0*rnorm(1)*sqrt(deltat)
s1<-s0+deltas
s2<-cbind(i,deltas,s1)
s<-rbind(s,s2)
s0<-s1
i<-i+1
}
if (graph==1){
plot(s[,1],s[,3],type="l", main="Simulation of a Price P rocess",
xlab="Days",ylab="Price")
abline(h=s00)
}
if (graph==0) return(s)
}

S is a 3 dimensional vector;S[1] is the time, andS[3] is the simulated stock price.
>price(mu=.15,sigma=.15,deltat=1/360,s0=62,n=100,gr aph=0)
>price(mu=.15,sigma=.15,deltat=1/360,s0=62,n=100,gr aph=1)

If graph is set to 0, then the price of 100 periods will be produced via the return
statement in the function, or ifgraph is set to 1, then the price of 100 periods will be
displayed in a graph. Each path is a random walk. Suppose manythousands of them are
plotted. In what region will they, on the average, lie? The upper and lower envelope will
define the region in which a price path will lie with approximately 95% confidence.

Stage 4. Calculation of the upper and lower limits of the envelope of price paths at a level of 95%
based on 500 simulations.
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Figure 7.2: Envelope of random price paths and a simulated price path superimposed on an enve-
lope.

n<-101
ss<-matrix(0,n,500)
j<-1
while (j <=500){
ss0<-price(mu=.15,sigma=.15,deltat=1/360,s0=62,n=10 0,graph=0)
ss[,j]<-ss0[,3]
j<-j+1
}
lower<-apply(ss,1,function(ss)(mean(ss)-

qt(.975,length(ss)-1)*sqrt(var(ss)/1)))
upper<-apply(ss,1,function(ss)(mean(ss)+

qt(.975,length(ss)-1)*sqrt(var(ss)/1)))
matplot(1:n,apply(ss,1,mean),ylim=c(50,80),type="l" ,
main="Envelope of Random Price Paths at 95%",xlab="Days", ylab="Price")
z1<-cbind(1:n,1:n)
z2<-cbind(lower,upper)
matlines(t(z1),t(z2),lty="solid")
matlines(z1,z2,lty="solid")
abline(h=62)

Plots of 100 confidence intervals where each one which was produced by the set of 500
simulations of the price paths are plotted and they illustrate an example of nested simula-
tions. The average of all paths is reflected by the single price path depicted in black while
the confidence intervals form an envelope within which a price path will probably lie if
one is produced.
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Stage 5. Check the envelopes.
plotprice<-function(){
sss<-price(mu=.15,sigma=.15,deltat=1/360,s0=62,n=10 0,graph=0)
matplot(1:101,sss[,3],type="l",add=T)
}

>plotprice()

A superimposed simulated random price path is shown on the right in Figure 7.2. The
envelope of confidence is not quite right because each of the individual confidence inter-
vals are presumed to be independent of the others. But they are in fact dependent because
the process of calculating the price is a Markov chain process. They therefore should be
wider; however, as a first approximation, the one which we produced is good enough.

7.2 Yield to Maturity

In this problem,

pv =
c1

(1 + r)
1
2

+
c2

(1 + r)
2
2

+ · · · v + cn

(1 + r)
n

2

wherepv is the present value,ci is the coupon,r is the interest rate, andv is the face value of
the bond. The interest rate,r , must be determined given the market price of the bond, the face
value of the bond, the coupon rate, the number of years and periods per year. A picture of the
yield to maturity curve will illustrate the nature of the problem. It will be calledytm for yield to
maturity. It needs to account for the possibility of paying the coupon annually or semi-annually.
The function, too, must account for the possibility of whether or not the face value of the bond
will be paid with the last coupon. In the present case of defining ytm , it is assumed that all
coupons are equal. Since the unknown quantity isr , we will name it,x in ytm to emphasize
that it is the unknown quantity.

ytm<-function(ind=0,p=1,cr,v,n,x){
c<-cr*v/p
w0<-0
for (i in 1:(p*n-1)){
w<-w0+c/(1+x/p) ∧(i/p)
w0<-w
}
i<-i+1
w<-w0+(v*ind+c)/(1+x/p) ∧(i/p)
return(w)
}

When the optionp is set to 1 then it is assumed that coupons are issued one period per year.
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When the optionp is set to 2, it is assumed that there are two periods per year. If the face value
of the bond is paid with the last coupon, then the optionind will be set to 1 otherwiseind will
be set to 0.

ytm(ind=0,p=1,cr=.6,v=100,n=2,x=.131)
curve(ytm(ind=0,p=1,cr=.6,n=2,v=100,x=x),0,1)
abline(h=100)
curve(ytm(ind=1,p=2,cr=.05,n=7,v=100,x=x),0,1)
abline(h=120)

The graph can be embellished with a title and a formula for describing the present value
curve.

ytm(ind=0,p=1,cr=.6,v=100,n=2,x=.131)
curve(ytm(ind=0,p=1,cr=.6,n=2,v=100,x=x),0,1,
main="Yield to Maturity of a Bond \n Semi-annual Payments",
ylab="Market Price", xlab="Rate of Return")
abline(h=100)
text(.5,100,c("Market Price"), adj=c(0,0))
text(.6,85, expression(pv==frac(c[1],(1+frac(r,2)) ∧frac(1,2))+frac(c[2],
(1+frac(r,2)) ∧frac(2,2))+cdots+frac(c[n-1],(1+frac(r,2)) ∧frac(n-1,2))+
frac(v+c[n],(1+frac(r,2)) ∧frac(n,2)) ) )

To incorporate the mathematical formula of the present value curve for the yield to maturity
problem, the syntax of the mathematical annotation inR was followed. A description of it is
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found in the Appendix and can be found inR by entering?plotmath . Such symbols as==
for the equals,c[n] for making subscripts, andfrac for writing fractions are not obvious. A
reference guide like the one in the Appendix is essential.

The graph of the yield to maturity curve is hyperbolic in shape, and where it intersects the
market price of the bond is the value of r which solves the yield to maturity problem. A more
precise estimate ofr than the one which can be obtained by inspecting a graph can bedetermined
by numerical techniques. That utility inR which will find the point of intersection of the yield
to present value curve with a specified market price is theuniroot procedure. This procedure
will find r such thatf(r) = 0. Let us define a new function,f , so that it is essentially the same
asytm except the market price denoted bya is subtracted fromytm . In the yield to maturity
problem, we want to find thatr such that the present value,pv=market price . To that end,
we create the new function,f = ytm − marketprice and find that value ofr which makes
f(r)=0 by means of theuniroot procedure.

f<-function(ind,p,cr,v,n,a,x=x){
c<-cr*v/p
w0<-0
for (i in 1:(p*n-1)){
w<-w0+c/(1+x/p) ∧(i/p)
w0<-w
}
i<-i+1
w<-w0+(v*ind+c)/(1+x/p) ∧(i/p) -a
return(w)
}

We will save some writing later, if the solution is assigned to an object liker.sol :
>r.sol<-uniroot(f,lower=0,upper=1,tol=.00001,ind=1, p=2,cr=.05,v=100,n=30,a=108)
>r.sol

List of 4
$ root : num 0.0912
$ f.root : num 0.00189
$ iter : int 8
$ estim.prec: num 5e-06

The required interest rate,r , for a market price of $108 with face value of $100, current interest
rate of .05 where coupons are issued twice a year for 30 thirtyyears is9.12%. Theuniroot
produced a list and, in order to extract the root off , we use

>r.sol$root

[1] 0.09123141

Of course, it is always prudent to check the answer:
>ytm(ind=1,p=2,cr=.05,n=30,v=100,x=.09123141)
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[1] 108.0019 and the agreement with the market price of $108 confirms thatr.sol is correct.

7.3 Application of Cubic Splines

Given only a few points, the problem is to estimate a yield to the maturity curve and then solve
for r for a given market price. In Section 7.1 on page 57, the function price was defined. It
produces the price path of a stock forn days givenµ, σ, S0, △T . For the sake of argument, let
sss be the actual market price of a particular bond withµ = 15, σ = .15, △T = 1

360
, S = 108,

andn = 100. Recall thatsss is obtained by:
>sss<-price(mu=.15,sigma=.15,deltat=1/360,s0=120,n= 100,graph=0)
>plot(sss[,1],sss[,3], main="Simulated Price of a Bond",
xlab="Days into the Future", ylab="Price")

Suppose that five points corresponding to five random times are generated bysss and that they
constitute all the available information about the market price of a bond. We will pretend that
these five points are real so that by means of the method of splines, we will demonstrate how
to estimate the time at which the present value of the bond will equal the market price of $108
and compare our answer with the known one. That is, because prices at five random times which
constitute this contrived set of data were produced by a known function,sss , in which the num-
ber of intervals to maturity was set to 30, we should expect our answer to be 30. The price of the
bond at five random times will be stored in the object,jj .

>jj<-sss[c(3,35,60,83,96),3]
>jj

[1] 118.2990 116.1878 118.7017 124.8170 128.5055 Given these five simulated prices of
a bond as if they were actual data, we want to estimate a maturity curve from them. The method
of interpolation for accomplishing that goal will be thesplinefun procedure.

>ff<-splinefun(c(3,35,60,83,96),jj) Thesplinefun will interpolate by means of
cubic splines the five points which we extracted fromsss . Let us see how well thesplinefun
procedure did in estimatingsss .

par(cex.lab=1.5, cex.main=1.5,cex=1.5)
sss<-price(mu=.15,sigma=.15,deltat=1/360,s0=120,n=1 00,graph=0)
plot(sss[,1],sss[,3], main="Simulated Price of a Bond",
xlab="Days into the Future", ylab="Price")
jj<-sss[c(3,35,60,83,96),3]
ff<-splinefun(c(3,35,60,83,96),jj)
curve(ff(x),1,100,add=TRUE)
>abline(h=120)



7.4. BLACK AND SCHOLES OPTION PRICING 63

0 20 40 60 80 100

12
0

12
5

13
0

13
5

Simulated Price of a Bond

Days into the Future

P
ric

e

Choosing a value ofr within the range of 20 to 40 will provide a first approximationto that
r for the market price of $120 as that is the interval in which the present value curve crosses the
line: y=120 . Recall thatuniroot will find the root of a function, i,e. it will find thatr such
that f(r)=0. We need to redefine the functionff so that, instead of crossing the line at $120, it
will cross the line h=0. To do that, we will subtract 120 from the original function.

>ff<-splinefun(c(3,35,60,83,96),jj-120)
>uniroot(ff,lower=20,upper=40,tol=.00001)$root

[1] 22.94355

The graph ofsss confirms that uniroot produced the right number. Although the answer is less
than the 30 which we had expected, such is the consequence of using a meager set of data.

7.4 Black and Scholes Option Pricing

The Black and Scholes option pricing formula is:

C = S(0)Φ(ω) − Ke−rtΦ(ω − σ
√

t)

where

ω =
rt + σ2t/2 − log(K/S(0))

σ
√

t

andΦ(x) is the cumulative distribution function for the Standard Normal distribution. Given
the initial stock price, S0, the strike price, K, the time, t,in years to maturity, and the risk free
interest rate, r, the problem is to find the implied volatility, σ. To that end, we need to define two
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functions: the call price,C, and the price of a put,P. In order to draw a graph of C and P as a
function ofσ, we will give the unknown variable,σ, the name, x, in both functions. Therefore,

C<-function(x=x,s0=100,r=.03,t=.5,K=100){
omega<-(r*t+x 2̂*t/2-log(K/s0))/(x*sqrt(t))
c<-s0*pnorm(omega)-K*exp(-r*t)*pnorm(omega-x*sqrt(t ))
return(c)
}

P<-function(x=x,s0=100,r=.03,t=.5,K=100){
omega<- (r*t+x 2̂*t/2-log(K/s0))/(x*sqrt(t))
p<-K*exp(-r*t)*pnorm(-(omega-x*sqrt(t)))-s0*pnorm(- omega)
return(p)
}

Both curves are superimposed in Figure 7.4.

>curve(P(x=x,s0=100,r=.03,t=.5,K=100),0,1)
>curve(C(x=x,s0=100,r=.03,t=.5,K=100),0,1,add=T)
>abline(h=11.1)

Because it is difficult to distinguish the two curves, we willlabel them.
>curve(P(x=x,s0=100,r=.03,t=.5,K=100,xlab="Volatili ty",ylab="Price"),0,1)
>A.text<-c("Price of Put")
>text(locator(n=1),A.text)
>curve(C(x=x,s0=100,r=.03,t=.5,K=100),0,1,add=T)
>B.text<-c("Price of Call")
>text(locator(n=1),B.text)
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time to maturity=.5 years, selling price=100, volatility=.3806032.
>C(x=.3806032,s0=100,r=.03,t=.5,sp=100) [1] 11.38542 Or for a volatility =.2, sell-

ing price=30, risk free interest rate=.08, time to maturity=.08 years, and the strike price=34 the
call price is:

>C(x=.2,s0=30,r=.08,t=.25,sp=34)

[1] 0.238349

Conversely, to find the implied volatility given the strike price, selling price, risk free interest
rate, time to maturity, we need to modify the function for finding the call price by subtracting
the prescribed call price denoted bya.

CC<-function(x=x,s0,r,t,K,a){
omega<- (r*t+x 2̂*t/2-log(K/s0))/(x*sqrt(t))
c<-s0*pnorm(omega)-K*exp(-r*t)*pnorm(omega-x*sqrt(t ))-a
return(c)
}

Let us confirm the earlier computation of the call price by finding the volatility.
>uniroot(CC,lower=0,upper=1,tol=.00001,s0=100,r=.03 ,t=.5,K=100,a=11.38542)$root

[1] 0.3806032

is the volatility in the first example.
>uniroot(CC,lower=0,upper=1,tol=.00001,s0=30,r=.08, t=.25,K=34,a=.238349)$root

[1] 0.1999991

which is the value we used for the volatility in the second example.

Let us do the same thing for the price of a put. We will change the function of the price of a
put by subtracting off the prescribed price of a put denoted by a.

PP<-function(x=x,s0,r,t,K,a){
omega<- (r*t+x 2̂*t/2-log(K/s0))/(x*sqrt(t))
p<-K*exp(-r*t)*pnorm(-(omega-x*sqrt(t)))-s0*pnorm(- omega)-a
return(p)
}

>P(x=.2,s0=30,r=.08,t=.25,K=34)

[1] 3.565104

>uniroot(PP,lower=0,upper=1,tol=.00001,s0=30,r=.08, t=.25,K=34,a=3.565104)$root

[1] 0.1999991

which is the volatility which was used in the first example.
>P(x=.3806032,s0=100,r=.03,t=.5,K=100)

[1] 9.896616

>uniroot(PP,lower=0,upper=1,tol=.001,s0=100,r=.03,t =.5,K=100,a=9.896616)$root

[1] 0.3805973

which is the volatility which was used the second example of the call price.
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Whether we use the function for the price of a call or the function for the price of a put, we
obtain the same estimate for the implied volatility as the following illustrates:

Suppose that >S<-30 then

>S+P(x=.2 2̂,s0=30,r=.08,t=.25,K=34)-
C(x=.2 2̂,s0=30,r=.08,t=.25,K=34)-34*exp(-.08*.25)

[1] 0

as it should becauseP (s, t, K) − C(s, t, K) − Ke−rt − S = 0 according to the theory of no-
arbitrage cost of a European option.
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Exercises

Exercise 1.In this exercise, write the following program to a text file and call the file: new-
passwd.fun. The suffix, fun, indicates that the file containsa function of R . It has no other
meaning. In fact, a suffix is not required to be a part of the name of the file. The program will
produce a password in which alternating letters of vowels and consonants are taken at random
by means of the stored procedure,sample() with a random digit inserted the middle of the
password.

vow<-c("a","e","i","o","u","y")
con<-setdiff(letters,vow)
VOW<-c("A","E","I","O","U","Y")
CON<-setdiff(LETTERS,VOW)
vowels<-union(vow,VOW)
consonants<-union(con,CON)
passcon<-sample(consonants,4,replace=T)
passvow<-sample(vowels,4,replace=T)
num<-sample(0:9,1)
password<-paste(passcon[1],passvow[1],passcon[2],nu m,
passvow[2],passcon[3],passvow[3],passcon[4])
print(password)

By alternating consonants and vowels, the password resembles a word so that it is easier to
memorize, but it will remain very difficult to crack by being one out of 345,600,000 possibilities.
It would be a nuisance to type this program into an active session of R every time a new password
is sought. Because the program has been saved to a text file, itcan be loaded intoR by means of
thesource() command:

>source("newpasswd.fun")

Exercise 2.This second exercise will produce the picture of all the different symbols which are
available inR for use in making graphs. The semi-colon is used to separate distinct commands
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on the same line when it is deemed convenient to write the two commands on the same lines.

ipch <- 1:25; dd <- c(-1,1)/2
rx <- dd+ range(ix <- (ipch-1) %/% 5)
ry <- dd+ range(iy <- 3 + 4-(ipch-1) %% 5)
plot(rx, ry, type="n", axes = F, xlab = "", ylab = "",xaxt="n" ,yaxt="n",

main = "Symbols for Points. Use pch = <number> ")
abline(v=ix, h=iy, col = "lightgray", lty = "dotted")
for(i in ipch) { # red symbols with a yellow interior (where av ailable)

points(ix[i], iy[i], pch=i, col="red", bg="red", cex = 4)
text (ix[i] - .3, iy[i], i, col="black", cex = 1.5)
}

Symbols for Points. Use pch = <number> 
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Chapter 9

Appendix 1

plotmath Mathematical Annotation in R

Description

If the text argument to one of the text-drawing functions (text , mtext , axis ) in R is
an expression, the argument is interpreted as a mathematical expression and the output will
be formatted according to TeX-like rules. Expressions can also be used for titles, subtitles
and x- and y-axis labels (but not for axis labels onpersp plots).

Details

A mathematical expression must obey the normal rules of syntax for anyR expression, but
it is interpreted according to very different rules than fornormalR expressions.

It is possible to produce many different mathematical symbols, generate sub- or superscripts,
produce fractions, etc.

The output fromdemo(plotmath) includes several tables which show the available fea-
tures. In these tables, the columns of grey text show sampleR expressions, and the columns
of black text show the resulting output.

The available features are also described in the tables below:

Syntax Meaning
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x + y x plus y
x - y x minus y
x*y juxtapose x and y
x/y x forwardslash y
x %+-% y x plus or minus y
x %/% y x divided by y
x %*% y x times y
x[i] x subscript i
x^2 x superscript 2
paste(x, y, z) juxtapose x, y, and z
sqrt(x) square root of x
sqrt(x, y) yth root of x
x == y x equals y
x != y x is not equal to y
x < y x is less than y
x <= y x is less than or equal to y
x > y x is greater than y
x >= y x is greater than or equal to y
x %~~% y x is approximately equal to y
x %=~% y x and y are congruent
x %==% y x is defined as y
x %prop% y x is proportional to y
plain(x) draw x in normal font
bold(x) draw x in bold font
italic(x) draw x in italic font
bolditalic(x) draw x in bolditalic font
list(x, y, z) comma-separated list
... ellipsis (height varies)
cdots ellipsis (vertically centred)
ldots ellipsis (at baseline)
x %subset% y x is a proper subset of y
x %subseteq% y x is a subset of y
x %notsubset% y x is not a subset of y
x %supset% y x is a proper superset of y
x %supseteq% y x is a superset of y
x %in% y x is an element of y
x %notin% y x is not an element of y
hat(x) x with a circumflex
tilde(x) x with a tilde
dot(x) x with a dot
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ring(x) x with a ring
bar(xy) xy with bar
widehat(xy) xy with a wide circumflex
widetilde(xy) xy with a wide tilde
x %<->% y x double-arrow y
x %->% y x right-arrow y
x %<-% y x left-arrow y
x %up% y x up-arrow y
x %down% y x down-arrow y
x %<=>% y x is equivalent to y
x %=>% y x implies y
x %<=% y y implies x
x %dblup% y x double-up-arrow y
x %dbldown% y x double-down-arrow y
alpha – omega Greek symbols
Alpha – Omega uppercase Greek symbols
infinity infinity symbol
partialdiff partial differential symbol
32*degree 32 degrees
60*minute 60 minutes of angle
30*second 30 seconds of angle
displaystyle(x) draw x in normal size (extra spacing)
textstyle(x) draw x in normal size
scriptstyle(x) draw x in small size
scriptscriptstyle(x) draw x in very small size
x ~~ y put extra space between x and y
x + phantom(0) + y leave gap for "0", but don’t draw it
x + over(1, phantom(0)) leave vertical gap for "0" (don’t draw)
frac(x, y) x over y
over(x, y) x over y
atop(x, y) x over y (no horizontal bar)
sum(x[i], i==1, n) sum x[i] for i equals 1 to n
prod(plain(P)(X==x), x) product of P(X=x) for all values of x
integral(f(x)*dx, a, b) definite integral of f(x) wrt x
union(A[i], i==1, n) union of A[i] for i equals 1 to n
intersect(A[i], i==1, n) intersection of A[i]
lim(f(x), x %->% 0) limit of f(x) as x tends to 0
min(g(x), x > 0) minimum of g(x) for x greater than 0
inf(S) infimum of S
sup(S) supremum of S
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x^y + z normal operator precedence
x^(y + z) visible grouping of operands
x^{y + z} invisible grouping of operands
group("(",list(a, b),"]") specify left and right delimiters
bgroup("(",atop(x,y),")") use scalable delimiters
group(lceil, x, rceil) special delimiters

References

Murrell, P. and Ihaka, R. (2000) An approach to providing mathematical annotation in plots.
Journal of Computational and Graphical Statistics, 9, 582–599.

See Also

demo(plotmath) , axis , mtext , text , title

Examples

x <- seq(-4, 4, len = 101)
y <- cbind(sin(x), cos(x))
matplot(x, y, type = "l", xaxt = "n",

main = expression(paste(plain(sin) * phi, " and ",
plain(cos) * phi)),

ylab = expression("sin" * phi, "cos" * phi), # only 1st is take n
xlab = expression(paste("Phase Angle ", phi)),
col.main = "blue")

axis(1, at = c(-pi, -pi/2, 0, pi/2, pi),
lab = expression(-pi, -pi/2, 0, pi/2, pi))

## How to combine "math" and numeric variables :
plot(1:10, type="n", xlab="", ylab="", main = "plot math & n umbers")
tt <- 1.23 ; mtext(substitute(hat(theta) == that, list(tha t= tt)))
for(i in 2:9)

text(i,i+1, substitute(list(xi,eta) == group("(",list( x,y),")"),
list(x=i, y=i+1)))

plot(1:10, 1:10)
text(4, 9, expression(hat(beta) == (X^t * X)^{-1} * X^t * y))
text(4, 8.4, "expression(hat(beta) == (X^t * X)^{-1} * X^t * y)",

cex = .8)
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text(4, 7, expression(bar(x) == sum(frac(x[i], n), i==1, n )))
text(4, 6.4, "expression(bar(x) == sum(frac(x[i], n), i== 1, n))",

cex = .8)
text(8, 5, expression(paste(frac(1, sigma*sqrt(2*pi)), " ",

plain(e)^{frac(-(x-mu)^2, 2*sigma^2)})),
cex = 1.2)
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