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Chapter 1

Introduction

With the rise in popularity of Linux, there has occurred a@amnent rise in popularity of free-
ware. This popularity arises not necessarily because fhwae is free but because of the free-
ware’s recognized reliability and utility. Calling freeveaby the name freeware can be mislead-
ing. While some software is distributed free of charge, thrse code is copyrighted to keep
it a secret and to keep it a proprietary product of the compAnyew book, in comparison,
is likewise protected by copyright; however, the owner @& look can read it, copy parts of it,
modify it, sell or give it away to someone else to read withestrictions. The owner cannot sell
or distribute a modified version or parts of a copyrightediba@dhout the publishers consent. In
the sense of having the freedom to modify, to copy, and taididge at will a creative product,
there is software which is "copyrighted" under the Generdllié License (GPL). Under this
license which the Free Software Foundation has champi@udtlyare may be sold or may be
distributed, but, in either case, the source code must beerfradly available to any user, so
that, in effect, the source code or modified version of theeawsil always remain in the public
domain. As neither the source code nor any derivative oflitever become proprietary, anyone
can see how the software works. More importantly, one canfyntige code to suit his particular
needs and, if the improvement is deemed a good one, he may woicate it to the authors of
the software for their consideration to implement. Thiscfice happens routinely in the Linux
community where, from the tens of thousands of beta testeany contribute improvements to
the Linux kernel. The community & developers like the community of Linux developers is a
development team of statistical software unsurpassedénasid talent.

At one time, S, a powerful language created at Bell Labs witiictv students of statistics
and researchers at scientific institutions have come toa&rebwas freely available but not any-
more, since the divestiture of AT&T in 1984. A GPL implemdrda of S, calledR is currently
underway around the world in response to the proprietaryicéens placed on its successor,
S-PLUS.
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Free softwards a nickname which is applied to computer programs whichdesgibuted
under the provisions of the General Public License (GPL)imdilar name which is often used
is open sourceThe two are not exactly synonymous, but they agree in thie baset that the
source code of the computer program must be legible and meelg fivailable to anyone. That
requirement is important because

e Source code reveals how the software works.
* Anyone can modify it.

» Accessibility to the source code encourages submissionmiovements.

Source code is intelligible whereas binary code which igipoed from the compiling of a
program for use on a specific operating system is unintblegiFor example, the source code
which comprises the function gienerrandom.c  used inR is the following:

static void GetSeeds()
{
SEXP seeds;
seeds = findVar(R_SeedsSymbol, R_GlobalEnv);
if (seeds == R_UnboundValue) {
Randomize();

}
else {
if (seeds == R_MissingArg)
error(".Random.seed is a missing argument with no default\ n");

if (lisVector(seeds) || LENGTH(seeds) < 3)
error("missing or invalid random number seeds\n");
seeds = coerceVector(seeds, INTSXP);

ix_seed = INTEGER(seeds)[0]; if(lix_seed) ix_seed++;
iy_seed = INTEGER(seeds)[1]; if(liy_seed) iy _seed++;
iz_seed = INTEGER(seeds)[2]; if(liz_seed) iz_seed++;
}

Because is governed by the General Public License, the collectiamebmpiled programs
which constitute the source codeRimust be made freely available to anyone who might want
to study the logic of a certain procedure like the excerpinshabove for generating random
numbers. Curiosity could lead someone to improve or cothegbrogram and if the modification
is deemed a good one by the core developeR dhen it will be implemented in the official
version.

The binary code; however is unintelligible. It is producelden the source code is compiled
for an operating system. The compiled versiorgeherrandom.c  which was shown above
is the following unintelligible binary code:
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The GPL originated in 1984 and comes under the auspices éréseSoftware Foundation.
Richard Stallman created the GNU General Public Licenseta@NU Library General Public
License.

The provisions of the GPL among others are as follows:

1. If you distribute copies of such a program, whether gmatifr a fee, you must give the
recipients all the rights that you have. You must make suaéttiey, too, receive or can
get the source code. And you must show them these terms s&@rbeytheir rights.

2. You may copy and distribute verbatim copies of the Pro¢g@aurce code as you receive
it, in any medium, provided that you conspicuously and appabely publish on each
copy an appropriate copyright notice and disclaimer of aatyr; keep intact all the notices
that refer to this License and to the absence of any warrantygive any other recipients
of the Program a copy of this License along with the Program.

3. You may modify your copy or copies of the Program or anyiparof it, thus forming a
work based on the Program, and copy and distribute such roatiins or work under the
terms of Section 1 above, provided that you also meet allefdltonditions:

(a) You must cause the modified files to carry prominent nettating that you changed
the files and the date of any change.

(b) You must cause any work that you distribute or publislat ih whole or in part
contains or is derived from the Program or any part theredigetlicensed as a whole
at no charge to all third parties under the terms of this Lseen

Copies of GPL and LGPL may be obtained from the Free Softwamméation:
e GPL:ftp.gnu.org/pub/gnu/COPYING

* LGPL.: ftp.gnu.org/pub/gnu/COPYING.LIB
* GnuManifestoftp.gnu.org/pub/gnu/GNUinfo
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* Webpagewww.fsf.org

In particular, the terms governing the useroére given verbatim below:

This software is distributed under the terms of the GNU GENER AL
PUBLIC LICENSE Version 2, June 1991. The terms of this licens e
are in a file called COPYING which you should have received wi th

this software.

If you have not received a copy of this file, you can obtain one
via WWW at http://www.gnu.org/copyleft/gpl.ntml, or by wr iting to:

The Free Software Foundation, Inc.,
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

A small number of files (the APl header files and export files

listed in R_HOME/COPYRIGHTS) are distributed under the

LESSER GNU GENERAL PUBLIC LICENSE version 2.1.

This can be obtained via WWW at

http://www.gnu.org/copyleft/lgpl.html, or by writing to the
address above

“Share and Enjoy.”

1.1 Obtaining R for the Microsoft Operating System

1. Make a sub-directory i€: drive and call it R.

N

http://cran.r-project.org

Select Windows ( 95 and later)

W

Select base

o

Select mirror near you

o

Selecthttp://lib.stat.cmu.edu/R/CRAN at Carnegie Mellon University Uni-
versity

7. The page automatically jumps back to Windows ( 95 and)later
8. Select base

9. Double click omrw1070.exe
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10. Select save

11. The next menu asks where on the PC tomit070.exe . PutitinC:\R .
12. Wait for about 4 minutes @& is being retrieved from Carnegie Mellon.
13. A box appears. Select open.

14. TheR installation starts.

15. Do not modify anything; simply click next, next, ...

16. To testifR works, click on theR icon; R should appear.

There are many libraries or what are nicknanaetil-on packages which are collections
of procedures which serve a specialized purpose. Some dftémelard libraries are invoked
automatically wherR is initiated. Others, because there are so many of them araciuded
in the installation ofR and must be invoked manually. For example, the library R@ilais
a set of routines which specializes in finance. It has roatimetten for options like American
Option and European Option. Given the strike price of theooptcontinuous dividend yield,
risk-free rate, time to maturity, and volatility of the umbjeng stock, the routine will produce
the value of the option and other numbers which appear to periant for a financial analyst.
In the Microsoft Windows version oR there exists a button for downloading a library. This
version ofR will retrieve the library and install it on the computer.

In the UNIX/Linux arena, the procedure is more involved. &kege likesurvey.tar.gz
is retrieved from th&ackage Sourcesection othttp://cran.r-project.org/Once the package has
been brought to the computer and placed in a directory suisaslocal/src/R/library :
the package is installed by executing the comm&dNSTALL survey.tar.gz

Regardless of the operating system, to incorporate aVilikarsurvey into the current ses-

sion ofR it is sufficient to execute the commalbrary("survey") while at the prompt.
The commandibrary(help=survey) will display procedures which are contained in the
survey library, and the commandata(package=survey) will display the names of sets

of data which came with the survey package when it was rettieVaking theapi data, for
example, the commarttelp(api)  will describe it and will show its namepipop . Finally,
the commandstr(apipop) will display explicit descriptive information of the vabées of

apipop .

The market for statistical computing software is domindtgdSAS, SPSS, and S-PLUS.
The popularity ofR comes from the highly successful S language which is now rtawy
and is the basis of S-PLUS. Sin€eis the GPL implementation of S, many users particu-
larly those who belong to the community of contributors ofr8 attracted tdR . Obtaining
help from someone aboR is easy. In general, help is easy, speedy, and usually ctenple
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Help is sought from the community of users Rfthrough the use of e-mail. First, it is nec-
essary to subscribe to the r-help mailing list by registgafter having gone to the web page,
http://www.r-project.org/ — Mailing Lists —r-help .Usethaveb interface
to gain access to the

R-help -- Main R Mailing List: Primary help

web page. At that place in the web page systempbject.org , it is possible to subscribe
to ther-help  mailing list. Address messages for helprtdielp@stat.math.ethz.ch

Be mindful when composing the message that it will be senutadheds, if not thousands, of
people around the world. A response from several experteasers oR will occur in a matter
of minutes.

Some of the principal developers&fare:

* Friedrich Leisch and Kurt Hornik at Technische Univeri@ien (Vienna University of
Technology)

» Martin Maechler at Eidgendssische Technische Hochschilleeh (The Swiss Federal
Institute of Technology)

» Peter Dalgaard at the University of Copenhagen
* Ross Ihaka at the University of Auckland, New Zealand
* Robert Gentleman at Harvard University

* Thomas Lumley at the University of Washington



Chapter 2

Basic Syntax

What isR ? R is a statistical computing package which can be employestantively or by
submitting programs in batch mode. The prompt which appebenR is invoked looks like:

>. Whenever a command is enclosed in a rectangle, the commandant to be executed by
the reader as if it belongs to a tutorial. WhBnis used interactively, it can be used as a big
calculator.

>1+1 Addition

>2*%2 Multiplication

>10-20 Subtraction

>105/35 Division

>57%%9 Modulo, i.e. 57(mod 9)

>2/"\5 Exponentiation

>sqrt(49) Square root

>exp(10) Exponentiation ot

>log(10) Logarithm to the base

>log10(10) Logarithm to the base 10

>pi Special constants
>complex(modulus=13,argument=pi/3) Complex number

>(13+5i)*(1-2i) Multiplication of complex numbers
>Mod(1+2i) Modulus of a complex number
>Arg(1+2i) Argument of a complex number
>Re(1+2i) Real part of a complex number
>Im(1+2i) Imaginary part of a complex number

Parentheses may be used for making compound expressions.
>2+(5-1)"(2"3)

R follows the usual order of precedence when performing lsugttic operations. The ma-
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nipulation of variables offers greater flexibility in perfoing numerical calculations. In R, what
looks like a variable is called ambject Assignment of objects is done not by arsign but by
means of using the- symbol which is composed of the less than symbkphnd the hyphen,
and it looks like an arrow. The assignment symbol may facetieedirection. Remember that
> merely signifies, in these notes, the prompt, and it is notagf@ command.

>x<-2

The number 2 is assigned o

>y<-3

The number 3 is assigned yo

>SX+y->7

The sum ofx andy is assigned ta.

The contents of an object can be displayed by typing the ndriie@bject like x, or by using
print(x) , for example:
>print("First Use of y")

>print(y)
which will be printed is enclosed within quotation marks.

According to the usual convention, a string of characters

Another common command for printing the contents of an dbgcat . | >cat(z)
While this command offers additional flexibility, it reqas more detailed syntax. The following
set of instructions illustrate a more complete applicatibcat , and itillustrates the appearance
of the+ symbol which indicates the continuation of a line and it isapart of a command.

>for (n in 1:length(z)){

+cat("First Use of cat. x+y=",z[n]," \n") Rather than display the results of using

}
cat on the monitor, they can be directed to a file by using the fileoop

>for (n in 1l:length(z){

+cat("First Use of cat. x+y=",z[n]," \n"file="tmp/demo.txt",append=TRUE)

}

In this example, théor loop on the index iterates through the values 1 to the length of
For each value ofi, cat will print the phraserirst Use of cat. x+y , followed by the
n'" element ofz, and then sincen was specifiedgat will begin a new line. More discussion
of for loops will appear in Chapter 6 on Control Language.

Vectors and matrices are more complicated objects.

>z<-¢(0,2,4,6,8)
>u<-c¢(1,3,5,7,9)
>u+z
I 1 5 9 1317
The[l] is used to denote that the output begins with element one ohe mxtensive output,
this notational device of conveniently denoting the bemigrof a row with the position of an
element will become more apparent later. Multiplicationectors takes two forms: elementwise
multiplication and the dot product.




>u*z | [1] 0 6 20 42 72

This use of demonstrates that it is a command which will produce elemisetmultiplication.
A different symbol must be used to perform the dot produciveen two vectors or to perform
matrix multiplication. First, the transpose of a matrix ector is produced as follows:

>t(u) so that the dot product of two vectors will conform and that, can be computed
using the matrix multiplicatiorf6*% command as in:
>t(U)%*%z [1] 140 There are two ways to perform the produet’

>u%*%t(z) or | >outer(u,z)

(11 2] [3] [4] []
2 4 6 8

6 12 18 24
10 20 30 40
14 28 42 56
18 36 54 72

(1]
(2]
(3]
(4]
(5]

[oNeoNeoNeNe]

whereu = [1,3,5,7,9] andz = [0, 2, 4, 6, 8].

Earlier the objectz, was created by assigning a column of numbes: to
>z<-¢(0,2,4,6,8)

Another way to enter data inf® is by means of thecan() command. For example,
>z<-scan()
>1:0
>2:2
>3:4 The elements of can be entered one-by-one when prompted. The prompt
>4:6
>5:8
>6:

begins with the position of the vector followed by a colorigafvhich the value of the element

is entered. The process continues until the last elemealiesved by a blank.

It should be emphasized that the languag&® giccommodates the needs of a professional
statistician who depends on matrix algebra, generatingai@nnumbers, computing probabili-
ties, and producing graphs. In these aspeRtss very efficient, and in these are its strengths.
A conspicuous difference betwe&and other brands of statistical computing software is the
absence of a graphical user interface (GUI). There is littierest in theR community to build
one, although there is a project currently underway to agwval GUI forR . The sentiments
which are prevalent among the usersRofire the same, in general, as those found elsewhere
among professional computer programmers. A GUI is regatalée an unwanted impediment
to masterful programming. For a proficient computer progrem the lexicon of a language
like R will have been memorized, and its use is honed by practickdaektent that a set of
commands may be written extemporaneously more quickly ift@were to depend on a GUI.
Even if a functional GUI were available R , it probably will receive little use.
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As far as the conceptual design of writing a computer progtéere is a very good cor-
respondence betwedf and SAS/IML except in regard to making graphs whRhs vastly
superior to SAS. The logic of a program writtenknis similar to one written in FORTRAN,
and the syntax oR bears a similarity to the syntax of C. In other words, someshe is adept
at writing programs in FORTRAN, C, or SAS/IML will quickly werstandRr .

To see all the objects which exist in the current sessionpses the commands:

>objects()
>Is()

Suppose an object is no longer needed and, to conserve gpaadmputer, it

should be removed, then itis deleted bysrm(u) |. Usels to verify thatu has been removed:
>1s()

Although R will automatically perform an operation callggrbage collectiorfor the pur-
pose of returning memory to the operating system, sometivhes large objects have been used
and eventually deleted, executigg() will clean things up irR ’s use of memory.
~ Vectors and matrices must conform in dimension otherwisemaniwg will be produced as
in:

>z >u<-c(1,3,5)
>u+z

1] 1 5 9 711
Warning message:
longer object length
is not a multiple of shorter object length in: u + z

R will cycle through the elements of the shorter vector in otdecomplete the operation. This
is convenient sometimes, for example:

>u<-10
>Uu+z

Sets of commands sometimes occur so often that they arelmated and given a name. One
such procedure isep which is an abbreviation for replicate. Rather than assi@nolu as
was done above and exploit the provision of cycling throdghghorter vector to complete the
operationu could have been assigned the vector consisting@®fL0, 10, 10, 10] which then is
added elementwise to the vector,That is,
>u<-rep(10,length(z))
>u The command-rep(10,length(z)) means: repeat 10 as
>u+z

many times as z is long. A similar commandép is seq for sequence.
>v<-se(q(1,100,2)

[T T 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

[26] 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 9 7 99
The[26] means that the6!" element in the vectos;, begins the second row of the output to the
monitor. The commandseq(1,100,2) , is interpreted to mean that an arithmetic sequence

[1] 10 12 14 16 18
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begins with 1 and ends at 100 by a difference of 2 between.steps
A shorthand method for defining a sequence of consecutivéarsms:

>v<-1:10 M1 2 3 4 5 6 7 8 910
This same sequence can be produced by:

>v<-seq(1,10,1) . .
Sv<-seq(L 10) The commanadeq(1,10) is an abbreviated form afeq(1,10,1)
which is actually an abbreviated form s€q(1,10,by=1) . An arithmetic sequence begin-
ning with -1 and ending at 1 with a difference of .1 can be poadiby:
>v<-seq(-1,1,.1)
>V

[1] -1.0 -09 -0.8 -0.7 -0.6 -0.5 -04 -0.3 -0.2 -0.1 0.0 0.1 O. 2 03 04
[16] 05 06 07 08 09 10

orby | > seq(-1,1,len=21)

[1] -1.0 -09 -0.8 -0.7 -0.6 -0.5 -04 -0.3 -0.2 -0.1 0.0 0.1 O. 2 03 04
[16] 05 06 07 08 09 10

where the optioen=21 specifies that a sequence be produced beginning with -1 afidgen
at 1 so that the sequence consists of exactly 21 elements.

In the case of generating a geometric series, it is suffiteense:
>3"(seq(1,10))

> [1] 3 9 27 81 243 729 2187 6561 19683 59049

There are many functions R which appeal to a statistician like those which generate ran
dom numbers. The functiomorm produces random numbers from a Normal distribution, and
another popular procedure of the same kinduisif ~ for generating random numbers from a

Uniform distribution.
>v<-rnorm(10)
>V

[1] -0.2826475604 1.5474520284 0.1604545019 0.033532829 2 -1.2486159628
[6] -1.1899395442 -1.6716649564 0.0002192872 -0.4893145 173 2.1375458025
No computer program exists which will produce purely randmmmbers. In fact, devising a
rigorous definition of random numbers is still an unsolvedibem even though we have an
intuitive understanding of its meaning. What is called ad@n number in a computer routine
is a number which is produced from a variety of algorithmstakom the theory of numbers.
Random number generators include the popular linear antiptiedtive congruential random
number generators. Each of these algorithms depends ogeagame number from which a
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remainder is obtained by means of the operation in moduldmaetic calledmodula These
algorithms are usually given names. Each has its strengthg@blems. A few of the named
algorithms for generating random numbers are: Wichmanh{Marsaglia-Multicarry, Super-
Duper, Mersenne-Twister, and Knuth-TAOCP. Although it asgible inR to specify which
algorithm to use, an ordinary userRfwill probably not care and will simply accept the default
generator. If none of the random number generators whiclaaiable inR is good enough,
then becausR is licensed under the GPL, someone can modify the sourceafdtie random
number generator, incorporate one from somewhere elseropase his own novel random
number generator. If it is a good one, then it is worthy of caminating it to the maintainers of
R for consideration.

The commandorder , will determine the ranking of each element in a vector.
>v<-c(-3,4,1,2,5)
>order(v)

113425
This is useful in arranging the elements of a vector in asognorder. It produces a list of posi-
tions ofv which will correspond to the right ordering of In ascending order, a rearrangement
ofvis-3 1 2 4 5 inwhich-3is seen to correspond to position ¥irl corresponds to posi-
tion 3 inv; 2 corresponds to position 411 4 corresponds to position 2y and, 5 corresponds
to position 5 inv. The commandprder , therefore, will produce a vector of positions which if
the original vector had been arrayed according to the postit will be arranged in ascending
order. By arranging thest, 374, 4t 274 and5™ elements of/ in that ordery will be sorted in
ascending order:
>o0<-order(v)
>v[o]
-3 1 2 4 5
In order to produce a vector in descending order, it is sefficio useorder(-v) , so that,
>o<-order(-v)
>Vv[o]
The commandrev , reverses the order of a vector.
>rev(v) 1] 5 2 1 4 -3
The square brackets are used to make subsets of a vectak, mattata frame.

1] 5 4 2 1-3

>v[1]
>v[2:4] . To identify the position of an element of a vector, a logicghtion is em-
>Vv[c(2,5)]

ployed. Suppose, >h<-c(1,2,4,1,3,10) then| >h==1 | will print TRUEat every position

of v at which a 1 appears.

[1] TRUE FALSE FALSE TRUE FALSE FALSE
The use of== invokes a logical expression R which produces a series ®RUEandFALSE
each corresponding to an entry in the vector. The output earsbd to make subsets according
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to some condition.
>h[h==1] [1] 1 1

>h[h<=4] 1112413
One may chose specific positions like ttg 2"¢, and5'" positions as in:
>h[c(1,2,5)] 11123

It is not uncommon to exclude elements of a vector or matnixarber to exclude the*t and4*
elements of/, one may use:

>h[-c(1,4)]

The hypen which is the prefix @i(1,4) is interpreted to mean exclude.

2.1 Data Frames

A data frame is simply a combination of variables. They aefulsvhen the objects are analyzed
at once rather than typing the individual objects repegttatleach procedure. A data frame is
not a matrix, even though a data frame may at first seem liketi@axysince it can be manipulated
as if it were a matrix. Let
>u<-seq(0,8,2)
>v<-seq(1,9,2)
>dd<-data.frame(u,v)

>dd

abrwnNRE
0o~ NOC
O NI WEkEL

The sequences, andv, have been combined into an object called a data frame. Tehefgs
produces a synopsis of the structure and contents of antpfjeexample:

>str(dd)

‘data.frame’: 5 obs. of 2 variables:
$unum 024638
$v.num 13579

Let | cc<-data.frame(seq(1,8,1),seq(9,2,-1)) be another data frame, then
>dd+cc

>dd*cc

>dd/cc

>plot(dd)
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are all successful commands but the command for matrix phigkition
>t(dd)%*%cc
fails, becaused andcc are not matrices; they are data frames.

Any number of variables which conform in dimensions may be@gether into a data frame.
For example, let
>u<-seq(1,8,1)

>v<-seq(9,2,-1) . The vectorsy, v, andz may be used to form the datafranee,, which,
>z<-seq(-8,-1,1)

in turn, can be used for the purpose of processing the camiteof objects all at once.
>ee<-data.frame(u,v,z)
>plot(ee)

A unit of a dataframe is extracted by means of a $ symbol &e$u . Given a dataframe,
it is possible to manipulate elements individually by estirag them and operating on them, so
that, for example
t(ee$u)%*%ee$v

> [1] 156
Having to write the name of the data frame becomes a nuisdtereaavhile. The command,
attach() , will put the variables which constitute the data frame ia turrent workspace.
Rather than writé(ee$u)%*%ee$v , one could have written:
>attach(ee)
>t(u)%*%v
processing of the data framee, ends, the constituents of the data frame are taken out of the
workspace by executing:
>detach(ee)

without having to make a reference to the data frae®e,again. When the

2.2 Matrices

While a dataframe bears a resemblance to a matrix in some waygsot a matrix, but, on the
other hand, it can be converted into a matrix by means of thextand as.matrix

>m<-as.matrix(dd)

om . The same matrix could have been created by

>chind(u,v,z) The commandgbind , is a command which will append columns of one
matrix onto the columns of another. Likewigbjnd is used to append rows of a matrix onto
the rows of another matrix as in: >rbind(u,v,z) which will produce one long vector in
whichz is appended tg which in turn is appended 0. A clever use of transpose withind
will produce the same thing abind , for example
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>t(rbind(t(u),t(v),t(z)))

15

The choice of usingbind or cbind is dictated by the

context of the problem. Sometimes, it is appropriate to aggd®/ columns and other times by
rows. The latter use of appending by rows wiliind  will be extensively used in an example

of a Monte Carlo technique.

Names can be assigned to a matrix at its creation by

>m<-chind(STAT=u, ENGLISH=v, PROFITS=2)

>m

STAT ENGLISH PROFITS

[1] 1 9 -8
2] 2 8 -7
[3,] 3 7 -6
(4] 4 6 -5
[5,] 5 5 -4
[6,] 6 4 -3
[7.] 7 3 -2
[8,] 8 2 -1

Names which may be assigned to columns or to rows are helpfubmly to remember a
significant association of an element with something but tdisnake them appear in the output
of a stored procedure later. Names are given to columns:

>colnames(x)<-c("w","x","y","z")

or names are given to rows:

>rownames(x)<-letters[1:3]
>X

Because names are inherited by procedures to produced

popular outputs like an analysis of variance table or plots the names as specified to columns

and rows of a matrix.

An internal function for producing lower case letters isledletters , andLETTERS

produces upper case letters.

>letters

>LETTERS
>colnames(x)<-letters[23:26]
>X

The transpose of a matrix is

>m[3,2]<-9999
>m

>t(m) | An element of a matrix can be directly changed by modifyingratividual element

Another way to create a matrix besides creating a matrix feodataframe is to use the

commandmatrix , for example:
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>x<-matrix(0,3,4)
X

(1] 2] [.3] [4]
1] o 0 0 0
2] O 0 0 0
B] O 0 0 0O

or to initiate a matrix with a sequence of numbers which wélverapped the sequence into a

matrix along columns and rows the following command can leelus
>x<-matrix(1:12,nrow=3,byrow=T)
>X

(1] [2] [.3] [4]
] 1 2 3 4
2] 5 6 7 8
B] 9 10 11 12

2.3 Editing and Help

Maintaining a cheatsheet of useful or tricky commands is @dgaractice, because there are
approximately 681 commands in the basic packagR ofit is impossible to remember all of
them let alone to remember the details of one’s favorite camus. It is especially annoying to
forget the syntax of a command after it had been used in arcégmication once before.

Many features of a command are described by prefiRihgfore the procedure of interest:
>?Arithmetic or | >7?Logic

The commandapropos , will search the current sessionRffor all commands containing
the procedure in their names. For example,
>apropos(“plot")

If one of the many commands involvimgot seems interesting likeermplot |, then the
description of its syntax may be examined by usipgetermplot . Usually the examples
which are given at the end of a description are extremelyulisgfien learning to understand
a procedure. One could by means of the cursor, highlight ample, copy and paste it to the
R prompt to see what the example does. In this way, the corgettes of a command may
be quickly learned. Notwithstanding the utility of manualges which are always presentRn
some people like to use a Graphical User Interface (GUI).ddmmand,| >help.start()

will start the computer’s web browser to display the mané@isll the commands iR .

Keeping a record of every command which has been succegssfdd in aR session in a
separate file is a helpful device in constructing a prograomv€rsely, the set of recorded com-
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mands which have been copied to a separate file can be hitgdighd pasted into the current
or in a newR session. Commands which had been executed are preserwsdyaimya file,
.Rhistory , and objects are preserved in the fiRData which if saved when terminating
anR session, will be incorporated automatically into the riexgession.

Sets of data may exist in ASCII files which can be edited diyday means of an editor
like VI. Sets of data which exist as SAS data files or SPSS datmay be brought into an
R session by means of tmead.ssd orread.spss commands. Due to the format of these
types of files, a set of data must either be edited in the padtware system or they may be
edited inR once they have become an object in the curResession. There exists a GUI i
for the purpose of modifying data. It is invoked by the comuohdix
>fix(x) It is, also, possible to make spot revisions of a data frammairix manually as in

>x[3,2]<-8888
>X

The commandijbrary() , Will produce a listing of all the packagesRfwhich have been
installed on the computer.
>library() There are many libraries which can be retrieved fovan.r-project.org
One such useful packagefmreign . After it has been installed on the computer, it is brought
into an active session & by the command

>library("foreign") To see a listing of all routines which are contained in a lijptke
foreign  use
>help(package="foreign") From the resulting listing, we see that with this librdyis

capable of bringing the contents of a SPSS or SAS data fildhetourrent session & .

After awhile, the session @& must eventually be terminated. To do so, enter
>q() By answering in the affirmative whether or not to save the wpace, the next time
is invoked, all the objects and functions which were activthe last session will become active
in the next current session. However, an answerooivill cause all objects to disappear.




18

CHAPTER 2. BASIC SYNTAX



Chapter 3

Graphics

Manipulating vectors, matrices, and data frames in ordantdyze data lies at the heartfbut
the analysis of data is the easiest part of a statisticaliensfic endeavor. Without a question,
the most difficult and expensive part of science is gettimgd#ita. The U. S. Government spends
billions of dollars per year in getting data from surveyspesments, and espionage. Many
thousands of people are employed for the sole purpose ongetata for the benefit of a few
analysts. Analyzing data is relatively easy especiallgesithe advent of the digital electronic
computer. In the end, a report of the experiment and the ptaisen of the conclusions which
the analysis of the data substantiates must be lucid anccwamlbosed. The inclusion of pictures
of the data and graphs of trends in the report are indispéndabices for clarifying concepts.

A simple graph to make is the one of a mathematical functidin(x)
>curve(sin(x),-2*pi,2*pi) It is plotted from—27 to 27r. To embellish the picture with

a title, labeled axes, and colored lines of various stylé®op ofcurve may be used.

>curve(sin(x),-2*pi,2*pi,main="Sine and Cosine Curves" Xlab="Time",
ylab="Amplitude",col="red",Ity=5)
>abline(h=0,col="blue",Ity=2)

The syntax ofcurve allows for the specification of the domain sih(x) . The color of
the horizontal line is specified bgol="blue" and the dotted style of the horizontal line is
specified byity=2 . Another function to graph is the cosine function:

>curve(cos(x),-2*pi,2*pi,main="Cosine of Time" ,xlab=" " ylab=""yaxt="n", As
xaxt="n",col="green",Ity=5)
a result of settinglab="""andylab="" , the axes are not labeled. This was done in order to

superimpose the two graphs on each other.

19
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>curve(sin(x),-2*pi,2*pi,main="Sine and Cosine Curves" Xlab="Time",
ylab="Amplitude",col="red",Ity=5)
>par(new=TRUE)

col="green",Ity=5)

>abline(h=0,col="blue"Ity=2)
While at first the commands might seems overwhelming, a moneptete description of the
options for use irturve appears irPcurve , ?plot , and in?par . The commandpar , does
not produce statistics or a graph. It sets the graphicahpeters. Graphical parameters may be
specified within a plotting function as was done in making @ye of the sine function with
curve . The other way of setting a graphical parameter is by meartkeoEommandpar .
When a graphical parameter is set by meansaof, it is used henceforth for the duration of the
current session dR unless it is superseded by another uspaf.

In the description opar , there is an option which specifies the seven styles of lihes;

Table 3.1: Styles of Lines

blank
solid
dashed
dotted
dot dash
long dash
two dash

O Ul WNEO

The optionsxlab andylab , allows for the arbitrary use of labels for the x and y axes.
The use okaxt="n" specifies that the x-axis must not be plotted. In the examipdieawing
a picture of the cosine functiorlab=""  andxaxt="n" cause no labelling of the x-axis and
no use of a marked scale. Sometimes keeping the axis blaskfslat the time of superimpos-
ing two graphs. The first instance ofirve will produce the title, labeling of the axis, and the
image of the first figure, while the second graph will be suppased on the first. The super-
imposition does not occur automatically. Every time a phgtfunction likeplot , curve , and
matplot is usedR erases any previous vestige of a plot and starts with a frieshlp order
to superimpose two images on the same plot, the compar{dew=TRUE) must be inserted
in between the two plotting functions as was done above fpesmposing a cosine plot onto a
sine plot.

Another and better way to superimpose two graphs is with sieeofithe optionadd=T :
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Sine and Cosine Curves
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>curve(sin(x),-2*pi,2*pi,main="Sine and Cosine Curves" Xlab="Time",
ylab="Amplitude",col="red",Ity=5)

>curve(cos(x),-2*pi,2*pi,ylab="",yaxt="n"

col="green",Ilty=5,add=TRUE)

>abline(h=0,col="blue",Ity=2)

In all of the examples discussed thus far, the plots have bearathematical functions for
whichcurve is used. Statisticians like to make pictures of data. By etieg | apropos(“plot")
, the result will prove that there are many commands with wihicmake pictures of data iR
. Rather than make a graph of a mathematical function, thewolg examples will make plots
of data. Even though, the set of data upon which the follovplogs are based is contrived, the
resulting simplicity of the graphs will bring out more relgdieatures of the commands. For
example,

>x<-sin(-2*pi+(1:100)*pi/50)

>t<-1:100 will produce a plot which will clearly shows the char-

>plot(t,x)
acteristic feature of discrete data. The plotted pointhiefdata can be joined by a smooth line,
if the type option is used in th@lot command.| >plot(t,x,type="1") The solid line

interpolates the set of points so that it looks as if a mathieaddunction had been plotted.

Rather than superimpose two mathematical functions on mevwe will superimpose two
pictures of data on one plot. To that end, discrete values &@osine function will be assigned
to the objecty.
>y<-cos(-2*pi+(1:100)*pi/50) . When the sine and cosine derived sets of data are placed
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¢
C

Figure 3.1:

on one plot by:| >plot(x,y) a circle appears instead of a superimposed sine and cosine
waves because the values of x and y when plotted togetheaallyctepresent a parametric ex-
pression of a circle. The desired superimposition of sirce@sine waves is accomplished by
creating two separate plots and then add the second one @f thp first by the use of the
par(new=TRUE) option.

>plot(t,x)
>par(new=TRUE)
>plot(t,y)

This time, the resulting picture as shown in Figure 3.1 is whavanted. Coincidentally,
both plots are made over the identical scales of the x and y. &gppose the axes of the two
plots are not identical as in

>plot(t,x)

>par(new=TRUE) | The superimposition of the two plots, however, is a poor dneemedy

>plot(t,10%*y)
for the mismatching which is cause by this approach in sogessing two graphs can be found
in another approach in which the two sets of data are combirtech matrix from which both
functions are drawn in the same graph.

>m<-chind(X,y)

>plot(m,type="1")
shows that this approach is flawed. Nevertheless, there pe@a plotting procedure which
makes plots of one column of a matrix against another coldrat procedure is calladatplot
It will produce the desired superposition of the cosine and finctions as shown in Figure 3.2.

. Once again acircle is produced contrary to our intentiowscearly
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>matplot(m,type="I",main="Sine and Cosine Curves",
col=c("red","green"),xlab="Time",ylab="Amplitude")
>abline(h=0,col="blue",Ity=2)

Sine and Cosine Curves

1.0

/N

0.0 0.5
1

Aplitude

-0.5
1

-1.0
1
(

Figure 3.2:

Incorporating a legend into the plot for identifying the tworves seems appropriate, but
where should it be placed? Thacator function will produce the co-ordinates at that place
on the plot where the cursor is placed and the left key of thesaalicked. Two points will be
specified inocator . One point will coincide with the upper left corner of the éegl, and the
second point will coincide with the lower right corner of tlegend. By means of the cursor,
these two points will be used ¥ to place the legend of the right size in the right place.

>legend(locator(n=2),legend=c("Summer","Winter"),co I=c("red","green"), To
lty="1") )
see whatocator  produces, executg >locator(n=2) and click when the cursor is where

the upper left and lower right corners of the legend shoulgllbeed. Explicitly,locator
produces co-ordinates. The co-ordinates whodtator  furnishes are automatically utilized
by the legend command. Even though, it is convenient to paratelocator  directly in the
legend command, putting the actual co-ordinates whHmbator  provides into the legend
manually makes it possible to reproduce the plot with thetelgn exactly the same position.

>legend(c(49.75750,75.37375),c(0.9460465,0.7325581) ,
legend=c("Sine","Cosine"),col=c("red","green"),Ity= "1")

A written report includes graphics, and unless a graph caribéed on paper it cannot be
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used in a report. A graph which is created®y
>postscript(horizontal=F,file="/tmp/CPI.ps")

col=c("red","green"),xlab="Time",ylab="Amplitude")
>abline(h=0,col="blue",lty=2)

>legend(c(49.75750,75.37375),c(0.9460465,0.7325581) Jegend=
c("Sine","Cosine"),col=c("red","green"),lty="1")
>dev.off()
can be saved as was done in the preceding example to a file stscRpt format which is recog-
nized by modern printers. The last commadely.off() , in the last set of instructions termi-

nates the use of the graphics device and causes the imagseéatdie the file/tmp/CPl.ps

One of the most popular forms of presenting data for a si@tistis the histogram.
>w<-c(83,85,74,70,92,64,72,87,88,75)

. There are various options R for producing

>hist(w)
histograms with different styles. A histogram which dig@#he relative frequency is produced
by: | >hist(w,prob=T) ; with absolute counts by >hist(w,prob=F) . The sizes of the

bins may be specified by means of threaks option as is done here:

>br<-seq(40,100,5)
>hist(w,breaks=br,prob=T,main="Exam Scores from Watchi ng Videos",xlab="Scores")

It is often desired to superimpose a Normal distribution dwiséogram.
>curve(dnorm(x,mean=mean(w),sd=sd(w)),add=T)

A Normal distribution is almost always an approximation #ohistogram. Perhaps, a binomial

distribution adequately describes the data.
>curve(dbinom(round((x-40)/60*length(w)),length(w),
mean((w-40)/60))/6,40,100,add=T)

mial distribution was translated so that it is centered @histogramR does not know how to

position a Binomial distribution or a Normal distributionttwout the help of the statistician who

must employ the right mathematical formulas.

In this example, a Bino-

Superimposed on top of the histogram, there appear two matieal functions. They are
dnorm(x) ,the probability density function of the standard Normatdbution andlbinom(x)
the probability mass function of the Binomial distributi®y entering?zdnorm and?dbinom ,

a description of the syntax of each will be displayed. The pfahe Normal distribution is easy
to make because the options are obvious. On the other hanthgk of superimposing the Bi-
nomial distribution on the histogram is difficult and trickizhardly comes as a surprise that the
Normal distribution is everyone’s favorite distributidhis easy, versatile, and fundamental in
the theory of statistics.

In an attempt to make the previous plot less complicatedillifoe divided into two graphs
and placed side-by-side.
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>par(mfrow=c(1,2))

par(cex.lab=1.5, cex.main=1.5,cex=1.5)

>hist(w,breaks=br,prob=T,main="Exam Scores from Watchi ng Videos",
xlab="Scores",col="red")

>curve(dnorm(x,mean=mean(w),sd=sd(w)),add=T)
>hist(w,breaks=br,prob=T,main="Exam Scores from Watchi ng Videos",
xlab="Scores",col="red")

>curve(dbinom(round((x-40)/60*length(w)),
length(w),mean((w-40)/60))/6,40,100,add=T)

The key command for putting two plots side-by-side on theesgage is the parameter state-
ment,par(mfrow=c(1,2)) . To put four plots on the same pagar(mfrow=c(2,2)) is
used. Similarly, to put three columns in two rows of plotsiom$ame pagear(mfrow=c(2,3))
is used. To reset the frames so that only one plot appears agea pse

>par(mfrow=c(1,1))

Suppose another set of data besmegas obtained and is assigned to the objpect,

>x<-c(95,81,59,68,74,79,72,70,81,58) The set of data contained wmand the set of
data contained ix are obtained in a process which makeandx independent sets of data.
The set of data invare scores from an examination in understanding French stadents who
attend classroom lectures whergasontains examination scores for proficiency in French from
students who also listened to audio tapes of French. We wiskd the data of both.

>plot(w,x) Some points lie far away from the rest of the data. The comnetify
will allow us to find which points in the data produced the psiof interest in the plot.
>identify(w,x) A more ambitious goal might be to place the names of the pointihe
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Figure 3.3:

plot as a result of identifying some of them as in the follogwaxample of identifying four points
and saving the resulting image to a Postscript figg8.ps

>w<-c(83,85,74,70,92,64,72,87,88,75)
>x<-¢(95,81,59,68,74,79,72,70,81,58)
names<-c("A","B","C","D","E","F","G","H","I","J")
par(cex.lab=1.5, cex.main=1.5,cex=1.5)

>plot(w,x,main="Scores from Lectures Alone versus Lectur es and Audio Tapes",
xlab="Only Lectures", ylab="Both Lectures and Audio Tapes "
identify(w,n=4,x,labels=names,plot=T)

dev.print( postscript, horizontal=FALSE, file="fig8.ps ")

After the points have been identified by means of using thearuthe plot will be saved to
fig8.ps

3.1 Box Plots

A single box plotis simple to make. Supposge-c(83,85,74,70,92,64,72,87,88,75) :
then a box plot of this data can be made byboxplot(w)

A useful aspect of boxplots can been seen when a series oflbxgpe put side-by-side in
the same plot. This arrangement of box plots offers a quielw\of the relationship of the sets
of data with each other. The following set of commands widlate four box plots of the scores
in French depending on classroom instruction only givem,ithe use of only video tapes given
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Box Plots of French Scores
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in w, the use of only audio tapes givenyinand the use of only a textbook givenan

w <-¢(83,85,74,70,92,64,72,87,88,75)

X <-c(95,81,59,68,74,79,72,70,81,58)

y <-¢(86,71,49,63,65,72,78,68,85,65)

z <-c(87,61,45,81,72,67,66,51,55,58)

p<-list(w,X,y,z)

boxplot(p,main="Box Plots of French Scores",

ylab="Scores" xlab="",xaxt="n",horizontal=FALSE)

axis(1,at=c(1,2,3,4), labels=c("classroom","video"," audio","text"))

The use of thdist  allows the simultaneous plotting of the four box plots in qaure,
and the use adixis puts nice labels on the x-axis at positions 1, 2, 3, and 4 ectaly.

3.2 Confidence Intervals

One of the most important concepts in statistics is the cenfid interval. For a small enough
population, it might be feasible to obtain all the desirefdimation about it, like the mean and
the variance. Almost always, there is limited time, andéhame insufficient financial resources
to examine the entire population. Instead, a sample of tpelpton is usually drawn which, if
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it is done properly, will represent the population in whicse the mean of the sample will be
close to the mean of the population, and the variance of timpkeawill be close to the variance
of the population. The statistics which are derived from mga cannot except in extremely
rare events be exactly the same as the correspondingissatisthe population. A good sample,
nonetheless, does contain accurate information abouiialgtion.

By means of confidence intervals, it is possible to infer sohaacteristics of the population
based on the set of experimental data which was obtaineddsampling of the population. The
length of the confidence interval will indicate the precisad the data, and its location will indi-
cate the likely region which contains the parameter of ggtof the population. The importance
of the confidence interval lies in its use to substantiatenéerénce about the population.

If a very large number of 95 percent confidence intervals &#eqal, then, on the average,
95 percent of them will cover the true population mean. Weé wgeR to produce a picture of
twenty 95 percent confidence intervals to illustrate themmrepof confidence intervals.

The example begins by defining a functiam,. Every command aftef and beforg be-
longs to the function. A function iR is akin to a sub-routine in FORTRAN or to a module in
SAS/IML. A vector of30*n random numbers is generated from a standard Normal digtibu
The vectory, is converted into a matrix consisting of 30 rows of n columitge lower limit of

the 95% confidence interval is
S

Yy — tn—l,%

NG

which will be translated in th& language as:
mean(y)-qt(.975,length(y)-1)*sqrt(var(y)/length(y))
The upper limit is the same except that aymbol is used instead of the minus sign.
>ci<-function(n=20){
>y<-matrix(rnorm(30*n,0,1),nrow=30)
>lower<-apply(y,2,function(y)(mean(y)-qt(.975,

length(y)-1)*sqrt(var(y)/length(y))))
>upper<-apply(y,2,function(y)(mean(y)+qt(.975,

length(y)-1)*sqrt(var(y)/length(y))))

"Twenty 95 percent Confidence Intervals",ylab="Length")
>z1<-cbind(1:n,1:n)

>z2<-cbind(lower,upper)

>matlines(t(z1),t(z2),lty="solid")

>abline(h=0)

>}

>Ci()

The last command;i() , will execute the function which will produce the 20 confiden
intervals.

The trick whichR provides is given by the commaagply . It means that a function is to be
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Twenty 95 percent Confidence Intervals
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applied to each record of a column. Thatapply(y,2,function(y){...}) will apply
the function to every column gf. The commandapply(y,1,function(y){...}) , will

cause the function to be applied to every rowyofapply is a peculiar though very handy
command whichR inherited from S. There is no corresponding command in FORYRYr in
SAS/IML, like apply .

The procedure usesatplot to plot the end points of the twenty confidence intervals en th
plot. Two vectorsz1l andz2, are created which contain the end points of the twenty centid
intervals, but the end points are made invisible by the optigpe="n" . The x co-ordinates
of the lower and upper limits are containedath and the y co-ordinates for the lower and
upper limits are contained 2 . The lower and upper limits are connected with a solid line by
means ofmatlines . The true population mean is denoted by the horizontal Ineated by
abline(h=0) . That 18 out of 20 confidence intervals appear to cover thellptipn mean
substantiates the theory that, on the average, 95% of thfedeane intervals will contain the
population mean.
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Chapter 4

Statistics

One can use the basic arithmetic operationR td calculate any statistic, but it is not necessary
to re-invent the wheel for calculating elementary statsstvthenR contains stored procedures to
perform the common computations. For the many examples®ttapter, the set of data will
be maintained in a data frame. It is a peculiar structur@ efhich came from S. A data frame
is a collection of variables which have the same lengthtitecture is like an array in which the
elements of a column correspond to the elements of a vari@blae permissible manipulations
of a data frame are like those of an array or matrix, but theyotibe fully extended to matrix
algebra. In order to apply the operations of matrix algelordata frames, a data frame must be
converted to a matrix. The nandel will be given to the object which will be the data frame of
the following examples. The data frame will be initializegdthe command:

>dd<-data.frame() and it will consist of the four variables:

>w<-c(83,85,74,70,92,64,72,87,88,75)
>x<-¢(95,81,59,68,74,79,72,70,81,58)
>y<-c(86,71,49,63,65,72,78,68,85,65)
>z7<-¢(87,61,45,81,72,67,66,51,55,58)

To assemble these four variables into the data

frame, the following command is executed: >dd<-data.frame(w,x,y,z) . The result-

ing structure ofdd can be displayed by >str(dd) . The commandstr()  is like the
proc contents  procedure of SAS. Although the columnsdaf correspond to the single let-
tered objectsv,x,y,z , names may be assigned to the columns of a data frame bpthes()
command so that, for convenience, they will be inheritethéndutput of subsequent procedures:
>names(dd)<-c("classroom","video","audio","text") >str(dd) will show the

contents of the modified data frantel, and| >summary(dd) will produce descriptive statis-
tics for all four objects at once. Let us verify some of thdistas.

>mean(dd)
>var(dd)

Data frames and matrices are not the same even though datesfizan be ma-
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nipulated, in some ways, as if they were matrices. To see sbthe differences between them,
we will compare, in the following set of commands, data fraraed matrices. The data frame,
dd, will be converted into the matrixyn by | >m<-as.matrix(dd)

Table 4.1: Comparison between a Data Frame and a Matrix

Data Frame Matrix Comments

cor(dd) cor(m) No Difference

hist(dd) hist(m) Fails for dd; histogram of union of values of m
plot(dd) plot(m) () plots for dd; one plot for all values of m
matplot(dd,type="1") matplot(m,type="1") No Difference

barplot(dd) barplot(m) Fails for dd, four plots for m

The following examples illustrate the use of producing cmtuand row sums of a table.
To take a tally by row] >margin.table(m,1) ; and by column] >margin.table(m,2)
The numeral 1 specifies that the operation be performed by, l@wd 2 specifies by columns. The
prop.table  command gives the proportions by row or by column accordirte option 1 or
2asin:| >prop.table(m,1) for proportions across columns per row|oeprop.table(m,2)
for proportions across rows per column.

In degree of popularity, the method of least squares commamdeeminent role among the
stored procedures R . Special features of tHen command will be discussed in more detail in
Chapter 5 which addresses advanced procedimeis. but one procedure iR which deals with
linear models. To illustrate its use, the next examples lwélbased on the problem of fitting a
linear modelclassroom = By + Bivideo + Boaudio + Bstext + ¢ wheree ~ N(0,0%). The
set of data already exists in the data frame, so that thdm() may immediately be applied
to it. | >Im(dd) Under the heading o€oefficients , the estimateg), = 64.39754,

61 = 0.50043, B = —0.05749, and5; = —0.28372 appear. The same results are produced in
the following equivalent formulation. >Im(w ~x+y+z)

The syntax which represents the model has the favx+y+z . All the necessary infor-
mation for performing an analysis of variance is contairmethe output of thém and can be
passed to a subsequent procedure #keva() : | >anova(lm(w ~x+y+z)) . Rather than
type the commandm(w ~x+y+z) , many times over again, then procedure can be assigned
to an object such as| >w.Im<-Im(w ~x+y+z) While expressed as an object, the output
of thelm procedure can be easily analyzed by means of applying \&addlities to it, like:

>anova(w.Im) . In the case of >fitted(w.Im) , this procedure produces the fitted val-
ues of the linear model while theesid procedure will produce the residuals of the linear
model: | >resid(w.Im) . These two procedures make it easy to produce the very ianort
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diagnostic plot of residuals versus predicted values tp tetermine whether or not the model
is a good model.

>plot(fitted(w.Im),resid(w.Im),main="Residuals versu s Predicted Values",
xlab="Predicted Values", ylab="Residuals")
>abline(h=0)

Residuals versus Predicted Values
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Various tests can be performed on the data like the one afigabie hypothesis that the mean
equals 80 at a level of confidence of 95%t.test(w,mean=80) The lower limit and upper
limit of a confidence interval can be found by following thepagpriate mathematical formulas
for producing the lower and upper limits of a confidence vaeas was done in Chapter 3 page
28.

>mean(w)-sqrt(var(w)/length(w))*qt(.975,length(w)-1 )
>mean(w)+sqrt(var(w)/length(w))*qt(.975,length(w)-1 )
Or the same thing can immediately be done by means dftétst command:
>t.test(w,conf.level=.95)

Both methods give the same results; their use depends ometiggetion of the analyst.

Data frames can also be used to calculate confidence indeR@l example, confidence in-
tervals at a level of confidence of 97% can be produced by:

>t.test(dd$classroom,conf.level=.97)
>t.test(dd$video,conf.level=.97)
>t.test(dd$audio,conf.level=.97)
>t.test(dd$text,conf.level=.97)
However, the easy way of performing this procedure repetitiaccording to each variable of

the data frame is to execute thpply command on.test  either by columns:
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>apply(dd,2,t.test) or by rows: | >apply(dd,1,t.test) . In so doing, confidence
intervals for each of the four variabledassroom, video, audio, text will be pro-
duced. The output of the commaragsply , will be saved to the objectolci as in:
>colci<-apply(dd,2,t.test,conf.level=.97)

Besides the data framR, has an entity called thiest which is a collection of objects. That

colci is a list can be verified as follows: >is.list(colci) which returns an affirmative
answer. The contents @blci is displayed by:| >str(colci) , and it shows thatoldi
contains information about each of the four variables. Hgwxtracted information pertaining
to a specific variable likelassroom : | >colci$classroom ,

colci$classroom
One Sample t-test

data: newX|, i]
t = 27.1501, df = 9, p-value = 6.045e-10
alternative hypothesis: true mean is not equal to 0
97 percent confidence interval:
71.51086 86.48914
sample estimates:
mean of X
79

we see that the listolci  contains everything that was gottentttgst ~ when it was invoked
only on classroom, i.e. >t.test(dd$classroom,conf.level=.97)

One Sample t-test

data: dd$classroom
t = 27.1501, df = 9, p-value = 6.045e-10
alternative hypothesis: true mean is not equal to O
97 percent confidence interval:
71.51086 86.48914
sample estimates:
mean of X
79

There are many ways to obtain the same answeR, irSome procedures are performed so
often that they are given names likeest . In order to save time, the writing of data frames
allows an analyst to process a collection of objects altwgyeandist  allows one to collect
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Figure 4.1: Empirical Cumulative Distributions and Histag

the output into one name from which the pertinent inforntatian be extracted according to the
name of a column in the data frame.

The need to find quantiles and probabilitiesiims easy to achieve. For example to find the t

quantile,ty 25, one will use

>qt(.975,9) . Conversely, to find the probability

P(ty < 2.262157),

>pt(2.262157,9) can be used. Or if four random numbers are needed,

they can be generated from a t distribution with 9 degreeseeidiom by using] >rt(4,9)

Four random numbers from a standard Normal distributionbzaabtained by >rnorm(4)

or | >rnorm(4,mean=0,sd=1)

, and

. The z quantilez o5 is obtained by| >gnorm(.975)

the probabilityP(z < —1.959964) is

>pnorm(-1.959964)

There are similar commands for other distributions, fotanse, to produce 10 random num-

bers from a Uniform distributior/(2, 9), runif

is used:| >x<-runif(10,2,9) . Suppose

that these generated numbers are given, one might wondhayitbuld actually be random and
can represent a Uniform distribution in a Monte Carlo teghei The making of a picture will

help in satisfying a statisticians curiosity. To that engjciure of the empirical cumulative dis-
tribution function of these 10 random numbers, might be abmg. It is necessary, at first, to

invoke the librarystepfun

>library("stepfun™)
>plot(ecdf(x))

, as follows:
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The empirical cumulative probability function as displdye Figure 4.1 looks linear enough
to support the assertion that the random numbers came fromifarkh distribution. Further-
more, a histogram of the same data bears a resemblance tertbgydunction of a Uniform
distribution: | hist(x, main="Histogram of 10 Random Numbers \n from U(2,9)")
By increasing the number of random numbers, the resemblanadJniform distribution be-
comes more apparent:

x<-runif(100000,2,9)

par(cex.lab=1.5, cex.main=1.5,cex=1.5)

hist(x,ylim=c(0,.28),breaks=1:10,border="white",col ="gray",prob=TRUE,main="")
title("Histogram of 100000 Random Numbers \n")

title( cex.main=1.25, "from U(2,9)")

axis(1,0:10)

and it serves as a good illustration of a problem with Montdd#chniques in deciding how

Histogram of 100000 Random Numbers
from U(2,9)

Density
0.15 0.20 0.25
L L |

0.10
1

0.05
1

0.00
L

many random numbers is sufficient to create a good empiristiltalition function.

Suppose that 100 random numbers are generated from a3R)(10,

>y<-rnorm(100,10,3)

par(cex.lab=1.5, cex.main=1.5,cex=1.5)

plot(ecdf(y),main=""")

titte("Empirical Cumulative Distribution \n")

title( cex.main=1.25, "of 100 Random Numbers from N(10,9) " )

plot(density(y), main=""xlab="",ylab=""")
titte("Empirical Probability Function \n")
title( cex.main=1.25, "of 100 Random Numbers from N(10,9) " )
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Empirical Cumulative Distribution
of 100 Random Numbers from N(10,9)

Fn(x)

The plot of the empirical distribution function shows a weakemblance to a Normal distri-
bution. Yet, statisticians often compare data against arfdbdistribution to evaluate the claim
that the set of data can be explained by a Normal distribuB@tause the values gf were
chosen at random from a N(10,9), a probability plotyo$hould be linear. In comparison, the
values ofx which were taken from a U(2,9) should produce a probabiliof far from linear.
Drawing probability plots which are also called gq plots beven in Figure 4.2 agree with our
expectations that the set of random numbers which were gttefrom a Normal distribution
does produce a fairly straight line while those random nusifrem a Uniform distribution do
not produce a straight qq plot.

par(cex.lab=1.5, cex.main=1.5,cex=1.5)

ggnorm(y, main="")

title("qg plot of 100 random numbers \n");title(cex.main=1.25,"from n(10,9)")
ggnorm(x, main="")

titte("qg Plot of 100 Random Numbers \n");title(cex.main=1.25,"from U(2,9)")
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Chapter 5

Advanced Procedures and Tricks

We will begin this chapter by applying the method of leastasqa to the problem of estimating
parameters of a linear model in two different but equivalesays. In the first case, the estimates
will be determined directly from the theoretical formutatiof the problem. In the second ap-
proach, estimates will be produced by stored procedureshvare found irR for linear models
and their accuracy will be verified by the manual computatioom theory.

If it is the goal to compose a program which is as parsimonamipossible, in order to
achieve a certain sense of elegance, then clever use ofl giareedures must certainly be used.
On the other hand, sometimes a less than parsimonious prograile not elegant, might be
better for making the logic of the program more comprehdasib

Let us examine the price of Ford common stock per share asctidarof the exchange rate
for Japanese Yen, Euro, and the Standard and Poors (S&E¥, &scbf the beginning of the year.
According to theory, the higher the exchange rate of yen pardor euro per dollar rises, the
more affordable Ford automobiles become relative to Jagaaed German imported cars and
therefore the greater the demand for Ford common stock.

>year<-c(1992,1993,1994,1995,1996,1997,1998,1999)

>ford<-c(38.38,52,58.75,26.88,34.38,23.02,45.81,63. 94)
>yen<-c(133.2,121,103.2,89.4,106.3,124.1,132.1,120. 4)
>eu<-c(1.64,1.61,1.67,1.38,1.48,1.68,1.85,.93)
>poors<-c(407.36,450.16,463.81,493.15,647.07,757.12 ,1101.75,1286.37)

>dd<-data.frame(year,ford,yen,eu,poors)
>names(dd)<-c("Year","Ford","Yen","EU","SP")

The first order of business in analyzing a set of data is to nagieture of the data. If the
theory is correct, there should appear discernible patteetween the variables and the price of
Ford stock.| >plot(dd)

39
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No simple functional relationship is apparent between tiepf Ford stock and the other
variables of interest upon inspecting the plot of the dataaAesult, a statistical analysis of the
data will probably produce no useful information, nonetiss| let us assert a linear model like
the following:

Jford=y; = Po+ Pryen+ Paeu+ Pz sp+e

wheree ~ N (0, 0?). It says that the price of Ford stock can be described by adicembination
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of the exchange rates of Yen and Euro and the level of Star@&uabrs 500 Index. The linear
model can be written more compactly as:

Y=X3+¢€

In terms of the data, the model appears as the following:

38.38 1 1332 1.64 407.36 ] €
52 1 121 161 450.16 €
58.75 1 1032 1.67 46381 | [ B €
2688 | _ |1 894 138 49315 | | G| | e 5.1)
34.38 1 106.3 148 647.07 | | S €5 '
23.02 1 1241 1.68 75712 | | B 6
45.81 1 1321 1.85 1101.75 €7
| 6394 | |1 1204 .93 1286.37 | e |

In the theory of statistical linear model¥,, is usually called theesponse variabland the
variablesyen, eu, andsp are called the explanatory variables. Some authors midihihesm
the predictor variables and others might call them the ieddpnt variables. The matriX, is
called the design matrix. We will use the design matrix amoMéctor of the response variable in
R to calculate the estimate of the vector of paramef@r3he design matrix must be constructed
from the data.

We will use three approaches to construct the design m&arstructing the vector of data
for the response variable is easy:
>y<-dd$Ford

1. The most logical approach to construct the design matoixlevbe to append a vector of
all 1's to the second through fourth columns of the data fradde as in:

>x<-chind(rep(1,length(y)),as.matrix(dd[,3:5])) The vector of all 1's is
produced byrep(1,length(y)) . The second through fourth columns of the data
frame,dd, are converted into a matrix by means of the commasdnatrix() . Then
both components are put together by thnd command to form the design matrix.

2. A simpler approach is to exploit a trick by whi&will repeatedly cycle through a short
vector until the operation is done. Instead of creating doreaf 1's which is congruent
in dimension with the matrix which was created frait, the vector of a single element
is used so that @& combines the two vectors, it will cycle through the short anél the
cbind operation is completed. It is a feature®fwvhich, although it is different from our
accustomed way of reasoning, will make the program morearparsous.
>x<-chind(1,as.matrix(dd[,3:5]))
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3. Athird approach utilizes a special commandRifor producing the design matrix namely:

>x<-model.matrix(Ford ~Yen+EU+SP,data=dd) This command was written if full
detall; however, if the data frame is attached, its varishlgl automatically be present so
that the data frame need not be mentioned. For conveniemizgadrame can be brought
into the memory of the current sessionRby means of the commanditach , asin:

>attach(dd) Because the data frame is attached to the current workspagk be
included in the search path & therefore, thenodel.matrix =~ command could have
been written without reference to the data fraiche;

>x<-model.matrix(Ford ~Yen+EU+SP) | When the data frame is no longer needed,
thendetach(dd)  will remove it from the search mechanism of the current wpdace.

From the theory of numerical analysis where statisticiaggetaken the method of least
squares, that which minimizes the sum of squared errors, SSE, corresptortisit line which
best fits the data. By imposing the condition ti&tE = > ¢? be a minimum and the assump-

=1
tion thate ~ N (0, o2), the unbiased estimator gfcan be written in matrix form as:

B=(XX)"'XY (5.2)

This equation constitutes the most important formula inttig@ry of linear models, and for our
purposes it gives the recipe for calculatifg The key command is the one for inverting the
matrix X’X which inR is done bysolve()

>solve(t(x)%*%x)%*%ot(X)%*%y

[1]

(Intercept)  42.066649253
Yen 0.208504528
EU -17.800308422
SP 0.005467642

The command%*% is matrix multiplication;t() is the transpose operator. For reference
later, the least squares estimates will be saved to thetpbgtahat

>betahat<-solve(t(x)%*%x)%*%t(x)%*%y
>petahat

(Intercept) 42.066649253

Yen 0.208504528
EU -17.800308422
SP 0.005467642
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Although the mathematical formula f@r can be used as a recipe to do the computation, the
use of linear models is such a popular technique in stagistigprocedure calledin, already
exists inR which will produce estimates of a linear model. The sameregts which have been

assigned ttetahat can also be produced by: >Im(Ford ~Yen+EU+SP,data=dd) and the
results are shown below:

Call:
Im(formula = Ford ~ Yen + EU + SP)

Coefficients:
(Intercept) Yen EU SP
42.066649 0.208505  -17.800308 0.005468

or because the data frardd had been already attached by the commattéch(dd) , itis
sufficient to write:
>Im(Ford ~Yen+EU+SP)

The formula which appears in thie command looks like the mathematical expression for
the linear model except that reference to thig is missing. This formulation is the typical
way to write a model irR . Whether to produce the estimates by time procedure or by the
mathematical formula fo is a matter or personal preference. The advantage of usitogeals
procedure likem is that it produces a package of other useful statistics.

What separates numerical analysis and statistics is thengg®n which statisticians make
thate; is a random variable. By virtue of that assumption, configantervals and the testing of
hypotheses can be made to substantiate an inference whiewa from the data. In conjunction
with thelm command inR , there are additional procedures which address variousstab

inference. For example, the compositionsofmmary() with Im() functions will produce
standard computations for linear models.

>summary(Im(Ford ~Yen+EU+SP))

Call:
Im(formula = Ford ~ Yen + EU + SP)

Residuals:
1 2 3 4 5 6 7 8
-4.494 10.901 22.356 -11.959 -7.044 -19.157 3.106 6.290

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 42.066649 57.148186  0.736 0.503

Yen 0.208505  0.542683  0.384 0.720
EU -17.800308 30.459085 -0.584 0.590
SP 0.005468  0.026440  0.207 0.846

Residual standard error: 17.66 on 4 degrees of freedom
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Multiple R-Squared: 0.1845, Adjusted R-squared: -0.427
F-statistic: 0.3017 on 3 and 4 DF, p-value: 0.8238

From thesummary() command there appears a list of the residuals of the modihatss of
eachg along with sufficient information to construct confidencteiwals for each of them, and
the F test statistic for testing the hypotheBis: 5, = (52 = 3 = 0 vs Hy : otherwise. The
results of thém procedure may be preserved in an object ft@ck.Im

>stock.Im<-Im(Ford ~Yen+EU+SP)
>summary(stock.Im)

ject,stock.Im | the same results are produced as was printed by metm@raird~Yen+EU+SP)
alone. Other commands likenova can be applied to the objestock.Im . In the case of
anova , the analysis of variance (ANOVA) table will be printed.

>anova(stock.Im)

. Having applied theummary() command to the ob-

Analysis of Variance Table

Response: Ford
Df Sum Sg Mean Sq F value Pr(>F)

Yen 1 3897 38.97 0.1249 0.7416
EU 1 230.05 230.05 0.7375 0.4389
SP 1 13.34 13.34 0.0428 0.8463

Residuals 4 1247.69 311.92

Entries in the ANOVA table confirm that for all practical poges,3; = 5, = 3 = 0. The
price of Ford stock cannot be predicted by the proposed nimated on the available data. Not
only must a statistician consider the F test statistic inuatang the adequacy of a linear model,
but he needs to examine the plot of residuals versus predieteies. The objecstock.Im
contains all the usual information associated with thevestion of the parameters of a linear
model.

It is possible to produce predicted values by following thetmematical formulaxB or by

applying the stored procedupgedict() or fitted() on the objectstock.Im as was
first explained on page 32:
>predict(stock.Im) . Similarly, the residuals can be produced by following tregmemat-

ical formula,y—xB, which when writtenirR is: | >y-x%*%betahat or more conveniently by

applying the stored procedumesid() , on the objectstock.Im : | >resid(stock.Im)

Having the residual values and predicted values in handytaopthem will show if there is flaw
in the model.

>plot(predict(stock.Im),resid(stock.Im),main="Resid uals vs Predicted Values")
>abline(h=0)

By inspecting the plot of residuals versus predicted values
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there does appear to be a pattern in the residuals versugtpedalues, consequently, the
formulation of the model must be flawed.

Based on this exercise, we see that there is more than oneonsgivie a problem. One
may use, on the one hand, the basic arithmetic and matrib@gm@pabilities oR while fol-
lowing a mathematical formula or one may use stored pro@sdwhich are provided IR .
The stored procedures are convenient when studying comtatistisal problems. Most of the
time, problems are not standard ones especially when des&arch, so that it usually is neces-
sary to compose unique functions for the given problem whelans that a good mathematical
formulation of the problem must have already been developedhetimes clever use of stored
programs although the original intention of designing thaight not solve the problem com-
pletely can nonetheless improve the efficiency of a custosigded program.

Table 5.1:Analysis of Variance for Fitting Regression for the GeneralLinear Model

Source of Variation df Sum of Squares Mean Sum of Squares F statistic
Mean 1 SSM = ng?
Regression r-1 SSR(m) = B;,Xm’Y MSR = % = ]&JSSSRE
Residual Error n-r SSE=SST-SSMFS R, o2 = MSSE = S5E
Total n SST = f:l y?
ie

In the next few commands, we will verify the computationst@lm procedure by comput-
ing each entry in the ANOVA table and the confidence interedlsachg;. The mathematical
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formulas of the ANOVA table are shown in Table 5.1. By meantheke formulas, the entries
of the ANOVA table will be produced and compared with the exdjve results of thém proce-
dure. The ANOVA table is reproduced below in Table 5.2 in viattlee corresponding commands
in R are written.

Table 5.2:Formulas for Analysis of Variance Written in R

Source of df Sum of Squares Mean Sum of Squares F statistic

Variation

Mean 1 SSM<-nrow(x)*mean(y) "2

Regression  ncol(x)-1 SSRm<-t(bhatm)%*%t(tx)%*%y  MSSRm<-SSRm/(ncol(x)-1) Fm<-MSSRm/MSSE
Residual Error nrow(x)-ncol(x) sum(resid(stock.Im) "N2) MSSE<-SSE/(nrow(x)-ncol(x))

Total nrow(x) sum(y "2)

To test the hypothesis théd, : 5, = (2 = 3 = 0 vs H; : otherwise, there is usually no
interest in the significance of the interce@, Rather, the significance of the other coefficients
of the linear model commands attention. To remg@yé&om consideration in the ANOVA table,
the entries are corrected for the mean. To that end, we wilstract a vector which contains
only the means of variables, Yen, EU, and SP>mu<-rep(mean(dd[,3:5]),each=8,1)
Here we see a new option in using tlep procedure, namely the optieach . Each mean
will be repeated 8 times and each group of 8 repetitions willdpeated only once. Another but
more tedious way to construgtwould be to construct & x 8 matrix and assign the appropriate
mean to each cell of the matrix. Having had construatedthe design matrix must be corrected
for the mean by subtracting the mean from each element. Bedae information provided by
the means is now dispersed throughout the design matrixaisenn of 1's which is no longer
needed will be omitted.

This new design matrix which must be corrected for the meanbeaconstructed from the
original data framedd, by subtractingnufrom each element and by omitting the inclusion of
the column of 1's as in:

>xm<-as.matrix(dd[,3:5])-mu
>Xm
The revised design matrix which has been corrected for trenmew can be used to estimate
the parameters of the model other than the interggpgbout which we are not interested.

>bhatm<-solve(t(xm)%*%xm)%*%t(xm)%*%y
bhatm

A comparison ot@ with [/3; verifies that the stored procedubha, produces the same esti-
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Table 5.3: Comparison of Estimates from Im and the Equations

Denomination  Im (X'X)"'X'Y
(Intercepts) 42.066649 —

Yen 0.208505 0.208504528
EU -17.800308 -17.800308422
SP 0.005468 0.005467642

It is obvious that thabetahat andbhatm are the same except th@d or what is called
the intercept is missing frombhatm . The rest of the entries in the ANOVA table can be easily

computed usingR .
>SSRm<-t(bhatm)%*%bt(tx)%*%y
>MSSRm<-SSRm/(ncol(x)-1)
>Fm<-MSSRmM/MSSE

>Fm

(1]
[1] 0.3017437

>summary(stock.lm)

Call:
Im(formula = Ford ~ Yen + EU + SP)
Residuals:

1 2 3 4 5 6

-4.494 10.901 22.356 -11.959 -7.044 -19.157 3.106
Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 42.066649 57.148186  0.736 0.503
Yen 0.208505 0.542683 0.384 0.720
EU -17.800308 30.459085 -0.584 0.590

The value of the F test statistic which corresponds to thegdasatrix corrected for the
mean is the same as the F test statistic which was produaedstrmmary(stock.Im)

6.290
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SP 0.005468  0.026440  0.207 0.846

Residual standard error: 17.66 on 4 degrees of freedom
Multiple R-Squared: 0.1845, Adjusted R-squared: -0.427
F-statistic: 0.3017 on 3 and 4 DF, p-value: 0.8238

Having verified that thédm produces the correct F test statistic, should one go thrakigh
trouble of writing an independent program to produce agstativhich a stored procedure in
R can already do? No computer program should ever be trustedalways prudent to verify
that a computer program functions correctly either by rdpoing the results by an independent
method as we have done here or by using a set of canned datehifcin the exact answer
is known and compare the results of the computer program théhexact results. A highly
desirable feature d® is that it is licensed under the GPL so that the logic of thegf@rocedure
of R can be examined and studied at anytime by anyone. If an droailé be discovered in the
source code, it can be announced and a solution, if one wamsl foan be submitted to the
developers oR for their consideration.

Besides verifying the accuracy of the ANOVA table, the aacyrof the the confidence
intervals for thes’s which thelm() procedure produces will also be verified. Accordingly, the
diagonal elements;”, of the inverse matrix oX’X must be computed, in order to determine
the lower and upper limits of the confidence interval. Therappate formula for a particulas;
is

Bi + Zf\tn_r,% Vat

The diagonal elements ¢X’X)~! are obtained by means of the commadidig()

>a<-diag(solve(t(x)%*%x))
>lower<-betahat-rep(sqrt(MSSE)*qt(.95,6),4)*as.matr ix(sqrt(a))
>upper<-betahat+rep(sqrt(MSSE)*qt(.95,6),4)*as.matr ix(sqrt(a))
>ci.beta<-cbind(lower,upper)

>colnames(ci.beta)<-c("lower","upper")

>ci.beta

lower upper
-68.98257581 153.11587431
Yen -0.84602579  1.26303484
EU -76.98780055 41.38718370
SP  -0.04590937  0.05684466

All the confidence intervals straddle 0 and, in so doing, confihat the F test statistic of
0.3017437 implies that the hypothesig{, : 51 = f, = 3 = 0, cannot be rejected un-
less the level of significance exceeds the p-value of :

>1-pf(.3017437,3,4)
[1] 0.8237515
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which is exactly what was produced bymmary(stock.Im) . A typical level of significance
by tradition is .05; therefore, the current set of data gjlpmvalidates the model and until an-
other set of data is obtained it appears that the proposedrlimodel does not account for the
price of Ford stock.

The test statistic]’ = aga_ Is used for testing the hypothes : 5, = 0vs Hy : 5; #0is
the following:
>T<-betahat/(sqrt(a)*sqrt(MSSE))

>T

[1]
(Intercept) 0.7360977
Yen 0.3842107
EU -0.5844006
SP 0.2067970

These values of T agree exactly with the values producededdyritiprocedure under the column,
t value

>summary(stock.Im)

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 42.066649 57.148186  0.736 0.503

Yen 0.208505  0.542683  0.384 0.720
EU -17.800308 30.459085 -0.584 0.590
SP 0.005468  0.026440  0.207 0.846

From the same procedure, the last column represents thie@sviar testing?,, : 5, = 0 vs H; :
B; # 0. The p-value is for a two-sided test like the one with which lwee been using. It is
defined to bep = 2P(t,_; > T). For example, >p<-2*(1-pt(abs(T),4)) where 4 is the
degrees of freedom. In conclusion, we reproduced the aabmggults of thdm procedure and
hence verified that thien procedure produced the correct statistics.

In regard to the foregoing discussion, a hoteworthy charestic of X'X is that it is a sym-
metric real matrix; therefore, according to the theory n&dr algebra it can be expressed by a
sum of its eigenvectors and eigenvalues. The comn&igdn() , will produce the eigenvalues

and eigenvectors of a symmetric real matrix. For instancegigen(t(x)%*%x) . It produces
a list of two components, values and vectors. In fact,
>str(eigen(t(x)%*%x)) confirms thateigen produces a list and a component is ex-

tracted in the usual way with $:

>val<-eigen(t(x)%*%x)$values
>vec<-eigen(t(x)%*%x)$vectors
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According to the theory of linear algebra,
X,X = Z )\ieie;

where); is an eigenvalue ane is its associated eigenvector, or in termdRof
>val[1]*vec[,1]%*%t(vec],1])+val[2]*vec[,2]%*%t(vec [,.2])+
val[3]*vec[,3]%*%t(vec[,3])+val[4]*vec[,4]%*%t(vec| A4])
produceX’X as it should. To eliminate the tedious job of typing many tiépe commands, a
loop can be employed:
>tx<-0
>i<-1
>while(i<=4){
>tx<-tx+val[i]*vec[,i]%*%t(vec],i])
>i<-i+1
>}
The first two lines set the initial values far the answer, and the index in the looping mech-
anism. As long as is less than or equal to 4, the loop will continue. With eaehnation of
the loop, the index, , is incremented by 1. Eventually, will exceed 4 and the loop will ter-
minate. Actual computation which is savedtin gotten by following the theoretical decompo-
sition of symmetric matrix produces the original matrix,X: The displays of| >tx | and

will, when executed,

>t(X)%*%Xx show that they are identical.

The commanavhile belongs to a family of commands which is known as control leugp.
Statements for conditioning on certain criteria, loops| famctions will be discussed in the next
chapter.



Chapter 6

Control Language

A function is toR what a sub-routine is to FORTRAN and a module is to SAS/IMLe Tdrm

of a function looks likefunction(x,y,z) where X, y, and z are arguments and the values
which are assigned to them are passed to the contents ofrttigoin. For example, the following
function will convert yen to dollar:

yen2dol<-function(yen,exc){
dol<-exc*yen
return(dol)

}

The variablegxc , is the exchange rate in dollars per yen. After the functias been defined,
then its use is simple. The functigen2dol()  will convert ¥50000 to dollars at an exchange
rate of $/¥=1/110:
>yen2dol(50000,1/110)
1] 4545455
Suppose we had several amounts of yen like ¥100, ¥50000,%G2%800, then an application
of the functionyen2dol will do the conversion.
>yen2dol(c(100,50000,97625800),1/110)
>[1] 9.090909e-01 4.545455e+02 8.875000e+04
If the result which is expressed as it is in scientific notai®not deemed presentable, then to
make the results more attractive, we will use the commanrettyNum , with the option to
insert a comma to separate groups of three digits.
>prettyNum(yen2dol(c(100,50000,97625800),1/110),big .mark=",")
1] "0.9090909" "454.5455" "887,507.3"
We can do even better by affixing the dollar symbol to the teday means of the paste com-
mand. The paste command is a useful device to combine letteksymbols together to form
names.
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>paste("$",prettyNum(yen2dol(c(100,50000,97625800), 1/110),big.mark=","),sep="")

$0.9090909 $454.5455 $887,507.3

An even prettier result can be produced with¢aé command. In the event that there might
be a large list of values of yen which one would like to convertollars, aor loop could be
employed. It will iterate through the list of values until tde conversions have been done.

Y<-c(100,50000,97625800)
for (x in Y)Y
cat("¥",prettyNum(x,big.mark=",")," is ","$",
prettyNum(round(yen2dol(x,1/110),2),big.mark=",")," Ssep=""" \ n"
}

¥100 is $0.91.

¥50,000 is $454.55.
¥97,625,800 is $887,507.3.

(On a keyboard when working on a Linux computer, presét-alt \% , to make the yen
symbol, ¥).

Thefor loop uses as an index which assumes at each iteration of the loop a rathe

vector,Y, which the functionyen2dol converts to dollars. The result gén2dol is rounded
to two decimal places by theund(,2) = command and then the result of that rounding is
made pretty by th@rettyNum command. Finally, the pretty result is concatenated tageth
with ¥, the value of the yen, the woiid, and then the value of the dollar in one step. Still,
another improvement to tHer loop can be made by making a single and succinct command to
do everything that has already prescribed. The followingfion,y2d() , will include all the
pertinent commands and can be applied to a large list of figiareonvert at a given exchange
rate.

y2d<-function(Y,exc){

for (x in Y)
cat("¥",prettyNum(x,big.mark=",")," is ","$",
prettyNum(round(yen2dol(x,1/exc),2),big.mark=",")," Ssep=""" \n")

}

}
>y2d(Y,110)
This is an example of nested functions where the indexfof a loop is evaluated by another
function until the loop terminates. It might be desirabletmvert a large set of values in yen to
dollars. The set might be in an text file. If it can be broughtithe current workspace and the
functiony2d can be applied to it, then the conversion will be easy. If ASI like yen.txt

has been created with the values: 200 300 400 500 600 700r&00ttHe contents gfen.txt

is brought intoR by means of theead.table = command as follows:

>Y<-read.table(file="yen.txt")
>str(Y)
>Y

The functiony2d , will convert all the values contained Wto dollars.
>y2d(Y)




¥200
¥300
¥400
¥500
¥600
¥700
¥800

s $1.82.
is $2.73.
s $3.64.
s $4.55.
s $5.45.
s $6.36.
is $7.27.

Similar in purpose to théor loop is thewhile
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loop. This loop will continue to iterate until the

condition which is specified in it is satisfied. For exampl@yalues of yen in multiple values of
1000 can be converted throughvaile loop.

i<-1
while (i <=20){

i<-i+1

}

cat("¥",prettyNum(i*1000,big.mark=",")," is ","$",
prettyNum(round(yen2dol(i*1000,1/110),2),big.mark="

"), sep=""" \n")

x<-c(0,2,4,6,8)

y<-¢(1,3,5,7,9)

i<-1

while(i<=10){

if (1%%2==0){

cat(i, "is an even number","

}
if (1%%2==1){
cat(i, "is an odd number","

}
i<-i+1

}

\n”)

\n")

An important command for control the progress of a progratmasonditional which is initiated
by the familiarif statement. For example,

Note that the logical equal symbelz, is used to describe the condition which thestatement
must evaluate before the subsequent command will be exkdreeall that thé6%s the symbol
for modulo, so thai%%?2is equal to O ifi is even, and%%?2is equal to 1 ifi is odd.
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Chapter 7

Application to Finance

7.1 Monte Carlo Simulation

In an asset price process, the price of an asset is given bstabbastic differential equation
known as a stochastic volatility model:

dS = k(p — S)dt + o SdW

wheredW (t) is a Weiner processy is the volatility, . is the effective return of Sy is the
speed of adjustment or reversion to the mean. A Monte Cartinique can be used to solve this
differential equation by numerical techniques. The défdral equation must first be written in a
form which will use discrete increments in the variablestfat end, we will use the following
equation in the Monte Carlo simulation:

AS = Sz — Si—l = ,MSZ_lAt + O—Si—lei\/ At

Suppose the price path §, Si, S, ..., Si00, for example. Values of; will come from a ran-
dom number generator for a Standard Normal distributioorm . We will call At by the name,
deltat , AS will be called,deltas , and the names of rest of the symbols will be evident. For
an initial price of s0=62, s1 can be found as follows:

Stage 1. Simple beginning.

mu<-.15

sigma<-.15

deltat<-1/360

s0<-62
deltas<-mu*sO*deltat+sigma*s0*rnorm(1)*sqrt(deltat)
sl1<-sO+deltas

55
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Stage 2.

>sl

CHAPTER 7. APPLICATION TO FINANCE

Producing a price path for 100 periods witbra loop.

s<-numeric()
mu<-.15
sigma<-.15
deltat<-1/360
s0<-62

for (i in 1:100){

deltas<-mu*s0*deltat+sigma*s0*rnorm(1)*sqrt(deltat)

sl<-sO+deltas
s2<-chind(i,deltas,s1)
s<-rbind(s,s2)

sO<-s1

i<-i+1

}

>Ss

7.1. In the program, we notice that thétind

Price

will show all 100 values of the price path, and a picture ohthegpears in Figure

Simulation of a Price Process

65
1

64
1

63
1

60
1

Figure 7.1:

command appends the new value of S

onto the bottom of the previously computed values of S. Thtore is initialized by the
commanchumeric otherwise when the program is run agaiwill contain 200 residual
entries from the previous run. Nothing is more impressia ¢ghpicture of the price path.
Therefore, the commands which were used to make the ploedithulated stock price
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appearing in Figure 7.1 are:

>plot(s[,1],s[,3],type="1")
>abline(h=62)

Stage 3. The functiomprice , and enhancements to the graph.

price<-function(mu,sigma,deltat,s0,n,graph=0){
s00<-s0

s<-chind(0,0,s0)

i<-1

for (i in 1:n){
deltas<-mu*s0*deltat+sigma*s0*rnorm(1)*sqrt(deltat)
sl1<-sO+deltas

s2<-chind(i,deltas,s1)

s<-rhind(s,s2)

sO<-s1

i<-i+1

}

if (graph==1){

plot(s[,1],s[,3],type="1", main="Simulation of a Price P rocess",

xlab="Days",ylab="Price")
abline(h=s00)

}

if (graph==0) return(s)

}

S is a 3 dimensional vectof([1] is the time, and>|3] is the simulated stock price.
>price(mu=.15,sigma=.15,deltat=1/360,50=62,n=100,gr aph=0)
>price(mu=.15,sigma=.15,deltat=1/360,s0=62,n=100,gr aph=1)

If graph is set to 0, then the price of 100 periods will be produced k&réturn

statement in the function, or graph is set to 1, then the price of 100 periods will be

displayed in a graph. Each path is a random walk. Suppose thanogands of them are
plotted. In what region will they, on the average, lie? Theempand lower envelope will
define the region in which a price path will lie with approxitelg 95% confidence.

Stage 4. Calculation of the upper and lower limits of the épe of price paths at a level of 95%
based on 500 simulations.
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Price

Figure 7.2: Envelope of random price paths and a simulated path superimposed on an enve-

Envelope of Random Price Paths at 95%
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Envelope of Random Price Paths at 95%
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n<-101

ss<-matrix(0,n,500)

j<1

while (j <=500){
ss0<-price(mu=.15,sigma=.15,deltat=1/360,5s0=62,n=10
ss[,jl<-ss0[,3]

j<-j+l

}

lower<-apply(ss,1,function(ss)(mean(ss)-
gt(.975,length(ss)-1)*sqrt(var(ss)/1)))
upper<-apply(ss,1,function(ss)(mean(ss)+
gt(.975,length(ss)-1)*sqrt(var(ss)/1)))
matplot(1:n,apply(ss,1,mean),ylim=c(50,80),type="1I" ,
main="Envelope of Random Price Paths at 95%" xlab="Days",
z1<-cbind(1:n,1:n)

z2<-chind(lower,upper)

matlines(t(z1),t(z2),Ity="solid")

matlines(z1,z2,lty="solid")

abline(h=62)

0,graph=0)

ylab="Price")

Plots of 100 confidence intervals where each one which wasdupeal by the set of 500
simulations of the price paths are plotted and they illistaam example of nested simula-
tions. The average of all paths is reflected by the singleegrath depicted in black while
the confidence intervals form an envelope within which agypath will probably lie if

one is produced.
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Stage 5. Check the envelopes.

plotprice<-function(){

sss<-price(mu=.15,sigma=.15,deltat=1/360,5s0=62,n=10 0,graph=0)
matplot(1:101,sss[,3],type="1",add=T)

}

>plotprice()

A superimposed simulated random price path is shown on gig m Figure 7.2. The
envelope of confidence is not quite right because each ohtheidual confidence inter-
vals are presumed to be independent of the others. But tleap &ct dependent because
the process of calculating the price is a Markov chain precékey therefore should be
wider; however, as a first approximation, the one which welpeed is good enough.

7.2 Yield to Maturity

In this problem,
1 Co U+ Cp
pv = T+ PR —
(1+7r)z (1+7)2 (1+7)2

wherepv is the present value; is the couponr is the interest rate, andis the face value of
the bond. The interest rate, must be determined given the market price of the bond, tte fa
value of the bond, the coupon rate, the number of years anddseper year. A picture of the
yield to maturity curve will illustrate the nature of the ptem. It will be calledytm for yield to
maturity. It needs to account for the possibility of payihg toupon annually or semi-annually.
The function, too, must account for the possibility of wheetbr not the face value of the bond
will be paid with the last coupon. In the present case of dedigim, it is assumed that all
coupons are equal. Since the unknown quantity, isre will name it,x in ytm to emphasize
that it is the unknown quantity.

ytm<-function(ind=0,p=1,cr,v,n,x){
c<-crv/p

w0<-0

for (i in 1:(p*n-1)){
w<-wO+c/(1+x/p)  "\(i/p)

wO<-w

}

i<-i+1

w<-wO0+(v*ind+c)/(1+x/p) Milp)
return(w)

}

When the optiom is set to 1 then it is assumed that coupons are issued onel penigyear.
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Yield to Maturity of a Bond
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When the optiorp is set to 2, it is assumed that there are two periods per yehe face value
of the bond is paid with the last coupon, then the opii@h will be set to 1 otherwisend wiill
be setto 0.

ytm(ind=0,p=1,cr=.6,v=100,n=2,x=.131)
curve(ytm(ind=0,p=1,cr=.6,n=2,v=100,x=x),0,1)
abline(h=100)
curve(ytm(ind=1,p=2,cr=.05,n=7,v=100,x=x),0,1)
abline(h=120)

The graph can be embellished with a title and a formula foculeisg the present value
curve.
ytm(ind=0,p=1,cr=.6,v=100,n=2,x=.131)
curve(ytm(ind=0,p=1,cr=.6,n=2,v=100,x=x),0,1,
main="Yield to Maturity of a Bond \n Semi-annual Payments",
ylab="Market Price", xlab="Rate of Return")
abline(h=100)
text(.5,100,c("Market Price"), adj=c(0,0))

text(.6,85, expression(pv==frac(c[1],(1+frac(r,2)) Mrac(1,2))+frac(c[2],
(1+frac(r,2)) Mrac(2,2))+cdots+frac(c[n-1],(1+frac(r,2)) Mrac(n-1,2))+
frac(v+c[n],(1+frac(r,2)) Mrac(n,2)) ) )

To incorporate the mathematical formula of the presentevalurve for the yield to maturity
problem, the syntax of the mathematical annotatioR iwas followed. A description of it is
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found in the Appendix and can be foundkby entering?plotmath . Such symbols as=
for the equalsg[n] for making subscripts, anidac for writing fractions are not obvious. A
reference guide like the one in the Appendix is essential.

The graph of the yield to maturity curve is hyperbolic in shagnd where it intersects the
market price of the bond is the value of r which solves thedytelmaturity problem. A more
precise estimate af than the one which can be obtained by inspecting a graph caeteemined
by numerical techniques. That utility R which will find the point of intersection of the yield
to present value curve with a specified market price isuthieoot  procedure. This procedure
will find r such thatf(r) = 0. Let us define a new functiof, so that it is essentially the same
asytm except the market price denoted &ys subtracted fronytm . In the yield to maturity
problem, we want to find that such that the present valys/=market price . To thatend,
we create the new functiorf, = ytm — marketprice and find that value of which makes
f(r)=0 by means of the&niroot  procedure.

f<-function(ind,p,cr,v,n,a,x=x){
c<-cr*v/p

w0<-0

for (i in 1:(p*n-1)){

w<-wO+c/(1+x/p)  "(i/p)

wO<-w

}

i<-i+1

w<-wO+(v*ind+c)/(1+x/p) ilp) -a
return(w)

}
We will save some writing later, if the solution is assigneh object liker.sol

>r.sol<-uniroot(f,lower=0,upper=1,tol=.00001,ind=1, p=2,cr=.05,v=100,n=30,a=108)
>r.sol

List of 4

$ root : num 0.0912

$ f.root : num 0.00189

$ iter :int 8

$ estim.prec: num 5e-06

The required interest rate, for a market price of $108 with face value of $100, curretgiiest
rate of .05 where coupons are issued twice a year for 30 thédys is9.12%. Theuniroot
roduced a list and, in order to extract the roof pive use
>r.sol$root
[1] 0.09123141

Of course, it is always prudent to check the answer:
>ytm(ind=1,p=2,cr=.05,n=30,v=100,x=.09123141)
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[1] 108.0019 and the agreement with the market price of $108 confirmgtbalt is correct.

7.3 Application of Cubic Splines

Given only a few points, the problem is to estimate a yielchermaturity curve and then solve
for r for a given market price. In Section 7.1 on page 57, theefion price  was defined. It
produces the price path of a stock fodays givery, o, S0, AT'. For the sake of argument, let
sss be the actual market price of a particular bond witk 15, 0 = .15, AT = W}O S =108,
andn = 100. Recall thasss is obtained by:

>sss<-price(mu=.15,sigma=.15,deltat=1/360,s0=120,n= 100,graph=0)

>plot(sssl[,1],sss[,3], main="Simulated Price of a Bond",

xlab="Days into the Future", ylab="Price")
Suppose that five points corresponding to five random timegemerated bgss and that they
constitute all the available information about the mark#tgof a bond. We will pretend that
these five points are real so that by means of the method ofesplive will demonstrate how
to estimate the time at which the present value of the bonidegyilal the market price of $108
and compare our answer with the known one. That is, becaiEs@t five random times which
constitute this contrived set of data were produced by a krfawction,sss , in which the num-
ber of intervals to maturity was set to 30, we should expectoswer to be 30. The price of the
bond at five random times will be stored in the objgct,

>jj<-sss[c(3,35,60,83,96),3]

>jj
[1] 118.2990 116.1878 118.7017 124.8170 128.5055 Given these five simulated prices of
a bond as if they were actual data, we want to estimate a matunve from them. The method
of interpolation for accomplishing that goal will be thplinefun  procedure.
>ff<-splinefun(c(3,35,60,83,96),jj) Thesplinefun  will interpolate by means of
cubic splines the five points which we extracted fress . Let us see how well theplinefun
procedure did in estimatinggs .

par(cex.lab=1.5, cex.main=1.5,cex=1.5)

sss<-price(mu=.15,sigma=.15,deltat=1/360,s0=120,n=1 00,graph=0)

plot(sss[,1],sss[,3], main="Simulated Price of a Bond",

xlab="Days into the Future", ylab="Price")

ji<-sss[c(3,35,60,83,96),3]

ff<-splinefun(c(3,35,60,83,96),jj)

curve(ff(x),1,100,add=TRUE)

>abline(h=120)
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Choosing a value af within the range of 20 to 40 will provide a first approximatimnthat
r for the market price of $120 as that is the interval in whiah pinesent value curve crosses the
line: y=120 . Recall thatuniroot  will find the root of a function, i,e. it will find that such
that f(r)=0. We need to redefine the functifin so that, instead of crossing the line at $120, it
will cross the line h=0. To do that, we will subtract 120 frolne toriginal function.
>ff<-splinefun(c(3,35,60,83,96),jj-120)
>uniroot(ff,lower=20,upper=40,tol=.00001)$root
1] 22.94355
The graph okss confirms that uniroot produced the right number. Althoughdhswer is less
than the 30 which we had expected, such is the consequensegfaimeager set of data.

7.4 Black and Scholes Option Pricing

The Black and Scholes option pricing formula is:
C = S5(0)®(w) — Ke "' ®(w — oV/t)
where
_rt+0°t/2 —log(K/5(0))
o/t

and ®(z) is the cumulative distribution function for the Standardridal distribution. Given
the initial stock price, SO, the strike price, K, the timentyears to maturity, and the risk free
interest rate, r, the problem is to find the implied volafjlit. To that end, we need to define two
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functions: the call priceC, and the price of a puR. In order to draw a graph of C and P as a
function of o, we will give the unknown variables, the name, X, in both functions. Therefore,

C<-function(x=x,50=100,r=.03,t=.5,K=100){

omega<-(rt+x  2*t/2-log(K/s0))/(x*sqrt(t))
c<-sO*pnorm(omega)-K*exp(-r*t)*pnorm(omega-x*sqrt(t )
return(c)

}

P<-function(x=x,s0=100,r=.03,t=.5,K=100){

omega<- (Pt+x  2*t/2-log(K/s0))/(x*sqrt(t))
p<-K*exp(-r*t)*pnorm(-(omega-x*sqrt(t)))-s0*pnorm(- omega)
return(p)

}

Both curves are superimposed in Figure 7.4.

>curve(P(x=x,s0=100,r=.03,t=.5,K=100),0,1)
>curve(C(x=x,s0=100,r=.03,t=.5,K=100),0,1,add=T)
>abline(h=11.1)

Because it is difficult to distinguish the two curves, we \albel them.

>A.text<-c("Price of Put")
>text(locator(n=1),A.text)
>curve(C(x=x,s0=100,r=.03,t=.5,K=100),0,1,add=T)
>B.text<-c("Price of Call")
>text(locator(n=1),B.text)

>curve(P(x=x,50=100,r=.03,t=.5,K=100,xlab="Volatili ty",ylab="Price"),0,1)

Comparison of Call and Put Curves

Price of Call

Price

Price of Put

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Volatility

A specific price of a call given that the initial stock pricé€) risk free interest rate=.03,



7.4. BLACK AND SCHOLES OPTION PRICING 65

time to maturity=.5 years, selling price=100, volatilitg806032.
>C(x=.3806032,s0=100,r=.03,t=.5,sp=100) [1] 11.38542 Orfor avolatility =.2, sell-

ing price=30, risk free interest rate=.08, time to matwif8 years, and the strike price=34 the

call price is:
>C(x=.2,50=30,r=.08,t=.25,sp=34)

1] 0.238349

Conversely, to find the implied volatility given the strikeqe, selling price, risk free interest

rate, time to maturity, we need to modify the function for fimgithe call price by subtracting

the prescribed call price denoted &y

CC<-function(x=x,s0,r,t,K,a){

omega<- (rft+x 2*t/2-log(K/s0))/(x*sqrt(t))

c<-sO*pnorm(omega)-K*exp(-r*t)*pnorm(omega-x*sqrt(t ))-a

return(c)

}
Let us confirm the earlier computation of the call price by ifmgcthe volatility.

>uniroot(CC,lower=0,upper=1,tol=.00001,s0=100,r=.03 ,t=.5,K=100,a=11.38542)%root

1] 0.3806032
is the volatility in the first example.

>uniroot(CC,lower=0,upper=1,tol=.00001,s0=30,r=.08, t=.25,K=34,a=.238349)$root

1] 0.1999991
which is the value we used for the volatility in the secondrepke.

Let us do the same thing for the price of a put. We will changeftimction of the price of a
put by subtracting off the prescribed price of a put denoted.b

PP<-function(x=x,s0,r,t,K,a){
omega<- (r’t+x 2*t/2-log(K/s0))/(x*sqrt(t))

p<-K*exp(-r*t)*pnorm(-(omega-x*sqrt(t)))-s0*pnorm(- omega)-a

return(p)

}

>P(x=.2,50=30,r=.08,t=.25,K=34)
1] 3.565104

>uniroot(PP,lower=0,upper=1,tol=.00001,s0=30,r=.08, t=.25,K=34,a=3.565104)$root
[1] 0.1999991

which is the volatility which was used in the first example.
>P(x=.3806032,s0=100,r=.03,t=.5,K=100)
[1] 9.896616

>uniroot(PP,lower=0,upper=1,tol=.001,s0=100,r=.03,t =.5,K=100,a=9.896616)%$root

1] 0.3805973
which is the volatility which was used the second exampldefdall price.
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Whether we use the function for the price of a call or the fiomcfor the price of a put, we
obtain the same estimate for the implied volatility as tHeWing illustrates:

Suppose that >S<-30 | then

>S+P(x=.2 2,50=30,r=.08,t=.25,K=34)-
C(x=.2 2,50=30,r=.08,t=.25,K=34)-34*exp(-.08*.25)

as it should becausB(s, ¢, K) — C(s,t, K) — Ke™™ — S = 0 according to the theory of no-
arbitrage cost of a European option.

(1] 0




Chapter 8

Exercises

Exercise 1.In this exercise, write the following program to a text filedasall the file: new-
passwd.fun. The suffix, fun, indicates that the file contaifisnction of R . It has no other
meaning. In fact, a suffix is not required to be a part of the earhthe file. The program will
produce a password in which alternating letters of voweld aonsonants are taken at random
by means of the stored procedusample() with a random digit inserted the middle of the
password.

vow<-c("a","e","i","0","u","y")
con<-setdiff(letters,vow)
VOow<-c("A","E","I","O","U","Y")
CONc<-setdiff(LETTERS,VOW)
vowels<-union(vow,VOW)
consonants<-union(con,CON)
passcon<-sample(consonants,4,replace=T)
passvow<-sample(vowels,4,replace=T)
num<-sample(0:9,1)
password<-paste(passcon[1],passvow|[1],passcon[2],nu m,
passvow[2],passcon[3],passvow[3],passcon[4])
print(password)

By alternating consonants and vowels, the password regsnablvord so that it is easier to
memorize, but it will remain very difficult to crack by being®out of 345,600,000 possibilities.
It would be a nuisance to type this program into an activegess R every time a new password
is sought. Because the program has been saved to a textdd, lite loaded intR by means of
thesource() command:
>source("newpasswd.fun")

Exercise 2.This second exercise will produce the picture of all theegfiit symbols which are
available inR for use in making graphs. The semi-colon is used to separstiact commands
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on the same line when it is deemed convenient to write thedwomands on the same lines.

ipch <- 1:25; dd <- c(-1,1)/2

rx <- dd+ range(ix <- (ipch-1) %/% 5)

ry <- dd+ range(iy <- 3 + 4-(ipch-1) %% 5)
plot(rx, ry, type="n", axes = F, xlab = "™, ylab =
main = "Symbols for Points. Use pch = <number> ")
abline(v=ix, h=iy, col = "lightgray"”, Ity = "dotted")

points(ix[i], iy[i], pch=i, col="red", bg="red", cex = 4)
text (ix[i] - .3, iy[i], i, col="black", cex = 1.5)
}

for(i in ipch) { # red symbols with a yellow interior (where av

ailable)

Symbols for Points. Use pch = <number>
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Chapter 9

Appendix 1

plotmath Mathematical Annotation in R

Description

If the text argument to one of the text-drawing functionext , mtext , axis )in R is
an expression, the argument is interpreted as a mathematfm@ssion and the output will
be formatted according to TeX-like rules. Expressions dao be used for titles, subtitles
and x- and y-axis labels (but not for axis labelspmrsp plots).

Details

A mathematical expression must obey the normal rules ofsyfior anyR expression, but
it is interpreted according to very different rules thandormalR expressions.

It is possible to produce many different mathematical syis\lgenerate sub- or superscripts,
produce fractions, etc.

The output frondemo(plotmath)  includes several tables which show the available fea-
tures. In these tables, the columns of grey text show saRpbgressions, and the columns
of black text show the resulting output.

The available features are also described in the tables/belo

Syntax Meaning
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X +y

X -y

xX*y

xly

X %+-% vy
X %/% vy
X %*% vy
X[i]

xX"2
paste(X, vy, 2)
sqrt(x)
sart(x, y)

=y
<Yy
<=y
>y
>=y
%~~% vy
%=~% vy
%==% vy
X %prop% y
plain(x)
bold(x)
italic(x)
bolditalic(x)
list(x, y, 2)

X X X X X X X X X

cdots

Idots

X %subset% y
%subseteq% y
%notsubset% y
%supset% y
%osupseteq% y
%in% vy

X %notin% y
hat(x)

tilde(x)

dot(x)

X X X X X

plotmath

X plusy

X minus 'y

juxtapose x and y

x forwardslash y

X plus or minus 'y

x divided by y

X timesy

X subscript i

X superscript 2

juxtapose x, Yy, and z
square root of x

yth root of x

X equalsy

X isnotequal toy

X islessthany

X isless than orequal toy
X is greater than'y

X is greater than or equal to y
X is approximately equal to y
x and y are congruent

X is defined as 'y

X is proportional to y

draw x in normal font
draw x in bold font

draw x in italic font

draw x in bolditalic font
comma-separated list
ellipsis (height varies)
ellipsis (vertically centred)
ellipsis (at baseline)

X is a proper subset of y

X is a subset of y

X is not a subset of y

X is a proper superset of y
X is a superset of y

X is an element of y

X is not an element of y

x with a circumflex

X with a tilde

X with a dot
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ring(x)

bar(xy)

widehat(xy)
widetilde(xy)

%<->% vy

%->% vy

%<-% vy

%up% vy
%down% y
%<=>% vy

%=>% vy

%<=% vy
%dblup% y

X %dbldown% vy
alpha —omega
Alpha —Omega
infinity

partialdiff

32*degree
60*minute
30*second
displaystyle(x)
textstyle(x)
scriptstyle(x)
scriptscriptstyle(x)

X ~~Yy

X + phantom(0) + vy
x + over(1, phantom(0))
frac(x, y)

over(X, y)

atop(x, )

sum(x[i], i==1, n)
prod(plain(P)(X==x), X)
integral(f(x)*dx, a, b)
union(A[i], i==1, n)
intersect(A[i], i==1, n)
lim(f(x), x %->% 0)
min(g(x), x > 0)
inf(S)

sup(S)

X X X X X X X X X

X with a ring

Xy with bar

Xy with a wide circumflex

Xy with a wide tilde

x double-arrow y

x right-arrow y

X left-arrow y

X up-arrow y

x down-arrow y

X is equivalentto y

X impliesy

y implies x

x double-up-arrow y

x double-down-arrow y

Greek symbols

uppercase Greek symbols

infinity symbol

partial differential symbol

32 degrees

60 minutes of angle

30 seconds of angle

draw x in normal size (extra spacing)
draw x in normal size

draw x in small size

draw x in very small size

put extra space between x and y
leave gap for "0", but don’t draw it
leave vertical gap for "0" (don’t draw)
x overy

x overy

x over y (no horizontal bar)

sum X[i] foriequals 1 ton

product of P(X=x) for all values of x
definite integral of f(x) wrt x

union of AJi] foriequals 1 ton
intersection of A[i]

limit of f(x) as x tends to O
minimum of g(x) for x greater than 0
infimum of S

supremum of S
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XNy + z normal operator precedence
XNy + 2) visible grouping of operands
My + z} invisible grouping of operands
group("("list(a, b),"1") specify left and right delimiters
bgroup("(",atop(x,y),")") use scalable delimiters
group(lceil, x, rceil) special delimiters

References

Murrell, P. and Ihaka, R. (2000) An approach to providingmeatatical annotation in plots.
Journal of Computational and Graphical Statisti® 582—-599.

See Also

demo(plotmath) ,axis , mtext ,text , title

Examples

X <- seq(-4, 4, len = 101)
y <- chind(sin(x), cos(x))
matplot(x, y, type = "I", xaxt = "n",
main = expression(paste(plain(sin) * phi, * and
plain(cos) * phi)),
ylab = expression("sin" * phi, "cos" * phi), # only 1st is take
xlab = expression(paste("Phase Angle ", phi)),
col.main = "blue")
c(-pi, -pi/2, 0, pi/2, pi),
expression(-pi, -pi/2, 0, pi/2, pi))

axis(1, at
lab

## How to combine "math" and numeric variables :

plot(1:10, type="n", xlab="", ylab="", main = "plot math & n umbers")
tt <- 1.23 ; mtext(substitute(hat(theta) == that, list(tha t= tt)))
for(i in 2:9)

text(i,i+1, substitute(list(xi,eta) == group("(",list( X,¥),")"),

list(x=i, y=i+1)))

plot(1:10, 1:10)

text(4, 9, expression(hat(beta) == (X"t * X)M-1} * Xt * y))

text(4, 8.4, "expression(hat(beta) == (Xt * X)M{-1} * X"t * )",
cex = .8)



plotmath
text(4, 7, expression(bar(x) == sum(frac(x[i], n), i==1, n
text(4, 6.4, "expression(bar(x) == sum(frac(x[i], n), i==
cex = .8)

text(8, 5, expression(paste(frac(1l, sigma*sqrt(2*pi)),

)
1, n)",

plain(e)Mfrac(-(x-mu)*2, 2*sigma”2)})),

cex = 1.2)
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