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1 Design of Surveys

Some statisticians make a distinction between a survey and an experiment by pointing out that

experimental variables are controllable, whereas, in a survey, they cannot be controlled. In an

experiment, for example, of heating a cup of water in a microwave oven, the time of duration of

heating is a controllable variable, and therefore, the resulting temperature of the water is con-

trollable. On the other hand, in a survey, there are some people who may be unemployed, there

may be some who are retired, and there may be others who have been involuntarily unemployed.

These conditions cannot be controlled by the experimenter nor can the experimenter control the

effect that employment has on a person’s self-esteem. There are other statisticians who argue

that a survey is just a special case of an experiment and we will use that understanding here.

Although the population which a researcher has defined contains all the information that he is

seeking, getting that information constitutes the goal of performing an experiment. It is infeasible

in practical matters to examine every element of the population even if the list of elements

of the population is perfect. The determination of the sampling size given the constraint of

limited financial resources in order to achieve a prescribed precision in the estimate is a difficult

mathematical calculation. Before the sample is drawn, the design of the survey has already

taken into account the specific mathematical formulas which will be appropriate in calculating

the estimates.

A simple experiment will illustrate some of these concepts. The job is assigned to count

the number of blades of grass which are alive in a suburban one acre lot. If the turf is well

groomed and has uniform thickness, then a clever statistician could count the number of blades

of grass in a 4” by 4” square and by means of proportions find the number of blades of grass in

a square foot and then continue to find the number of blades in the lot. So, let B be the number

of blades of grass in a 4” by 4” square. There are nine 4” by 4” squares in a square foot. There

are 43560 square feet in an acre; therefore the number of blades of grass in a one acre lot is:

B(9)(43560)=392040B.

Usually, however, the turf is blemished. There is probably a house, driveway, sidewalks on

the lot. The turf which grows under trees will be thin. The natural approach would be to partition
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the lot into areas of similar composition and qualities. The driveway, sidewalks, and the house

where no grass grows could be one partition. The area under the trees where the density of the

turf is light might constitute another. The area in full sunlight could still be another area. By

knowing the area of each partition of the lot and the number of blades of grass found in a 4” by

4” square, the grand total can be estimated by adding the estimated totals from each partition.

The lot is analogous to a population. But the population is not uniformly covered with the in-

formation which is being sought. Some elements might represent the poor, some the rich, others

might represent the healthy or the infirm, and so on. The process of partitioning the population

into areas of uniform composition, in order to facilitate the process of producing precise esti-

mates is called stratification. When the population is stratified, it is stratified into strata. Each

stratum is defined in such a way that its elements are uniformly similar. The numerous the strata,

does not mean better precision. The balance between the right number of strata and obtaining

the highest precision is a difficult problem which is usually solved by intuition and the method

of trial and error.

A significant problem which faces experimenters of the social sciences is the necessity of

using an artificial scale of measurements. Unlike the physical sciences like physics in which

observations span a continuum of values, the social sciences almost always obtain data according

to some artificial scales. They are given the name nominal, ordinal, interval, ratio. A nominal

measurement is associated with a categorical attribute of a subject. For example, 1 for male, and

2 for female. Or 1 for employed; 2 for retired, 3 for involuntarily unemployed, and 4 for other.

An ordinal measurement applies to some kind of ranking. For example, 1 for strongly dis-

agree, 2 for disagree, 3 for no opinion, 4 for agree, 5 for strongly agree. An important limitation

of the ordinal measurement is that they show a relative ranking rather than one based on an

absolute standard. Does a value of 5 mean that it is five times better and a 1? The scales could

have been reversed: 5 for strongly disagree, 4 for disagree, 3 for no opinion, 2 for agree, and

1 for strongly agree. Sometimes a scale might include answers with no useful value like 6 for

no response and 7 for not applicable. Obviously, 6 does not mean that a no response is twice as

good as a no opinion.

An interval measurement is the kind which scientists and engineers use all the time when

they measure such things as voltage and time. Ratio measurements are interval measurements

which have been translated to the origin. Specifically, if y “ a ` bx and z “ α ` βx then

y ´ a and z ´ α are ratio measurements because y´a

z´α
“ a

α
“ a constant, i.e. the x disappears.

The absolute temperature scale which is used in thermodynamics is a classic example of a ratio

measurement. The Fahrenheit and centigrade (Celsius) temperature scales are interval measure-

ments but Fahrenheit-456oF and Celsius-273oC are ratio measurements because they have been

translated to absolute zero.
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2 Content Analysis

Creating a scale for answers to questions is intuitive. Answers to questions for which an essay

or “free-response” is expected require the identification of key ideas which appear in the answer.

The answers for the question, HOW DO YOU DEFINE HAPPINESS?, could be as different with

one another as there are people who supplied answers. In the collection of answers, the same

themes or concepts might frequently occur so that they may be consolidated into a few general

categories like good health, optimism, and good financial security. In analyzing the contents of

answers coming from free response questions, common themes are identified. This process of

identifying common themes in essays, magazine articles, speeches, and answers is called content

analysis. Each category might be given a code which would facilitate the entry of the data into a

computer for subsequent analysis. The insights which can be gained from an analysis of the data

depends on the precision of the questions, the clear inter-relationships of the questions between

themselves, the form of the scales, and the quality of the content analysis. Designing a survey

is a science unto itself. Even such seemingly insignificant considerations like the font, color of

paper, voice and appearance of the interviewer affect the quality of the responses. Molecules and

electricity do not care what the scientist looks like but people who are being interviewed do care

about such things and quite often fashion their answers according to the impressions which they

make of the interview.

3 Assumptions

1. Independent observations

2. Unbiased data

3. Strata are disjoint

4. Identically distributed

5. Theory makes sense

6. Sample is representative of the population

4 Considerations when Planning a Survey

1. State the objective.

2. Precisely define the population in terms of space and time.

3. Construct the list also known as the sampling frame.
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4. Develop the plan of sampling. Calculate optimum sampling size and optimum allocation

across strata.

5. Choose the method of measurement.

6. Compose the survey instrument for taking the measurements.

7. Use of Focus groups.

8. Hire and train personnel.

9. Pre-test the survey.

10. Organize the enumerators, regional offices, and headquarters staff,

11. Organize the sets of data with such precautions as security and damage to the files.

12. Conduct the analysis of the data.

13. Method of publishing the results.

5 Sources of Error

1. Drawing a sample.

2. Lying by the respondent

3. Omission of data

4. Non-response

5. Data entry

6. Bad computer programming

7. Misunderstanding

8. Personal appearance, etiquette, and behavior

9. Inaccessible

10. Partial response

11. Sensitive information.
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6 Estimation

Based on intuition, we reason that in the process of estimating a characteristic of a population,

the information which is obtained from a survey can be generalized to the whole population

provided that the sample is representative of the population.

In the process of estimating the number of blades of grass which could be seen on a one

acre suburban lot, the number of blades of grass found in a 4” ˆ 4” square was expanded to the

number of blades of grass in the one acre lot by knowing that there are 9p43560q 4”ˆ4” squares

in an acre. We reasoned that the number of blades of grass in that acre would be 9p43560qB
where B is the counted number of blades of grass found in the 4” ˆ 4” square.

Another way to view the problem is to frame it in terms of probability. The probability of

selecting any one 4” ˆ 4” square at random is 1

9p43560q
. We will denote the probability of the

selection of a unit, πi. Because all 4”ˆ4” squares, in our example, have the same characteristics

and that they are selected at random, then we may assert that πi “ πj for any i and j unit in the

lot. That is, the probability of selecting a 4” ˆ 4” unit is uniformly distributed such that, if there

are N units in the population, πi “ 1

N
@i. With respect to our example, the number of blades

of grass in the one acre lot will be pτ “ 9p43560qBi “ Bi
1

9p4360q

“ Bi

πi
where Bi is the number of

blades of grass in the ith 4” ˆ 4” square. This example leads to the following theorem.

Theorem 1 Let pτ be the estimate of the population total of some quantity, then pτ “ xi

πi
where

xi is a measurement of a quantity in the ith unit and πi is the probability of selecting unit i.

We can generalize Theorem 1 to estimate the population total from a sample of more than

one element. Denote a sample of size n by Sn with elements denoted by li. That is, Sn “
tl1, l2, l3, . . . , lnu.

Theorem 2

pτ “
nÿ

i“1

xi

P pli P Snq (1)

For example, suppose the sample has three elements like three members of Congress, and

let x1, x2, x3 be their reported taxable incomes. We want to estimate the total taxable income

of the members of the Congress. The size of the population is 535. Let π1 be the probability of

selecting the first member of Congress in our sample of three. Let π2 and π3 be the probabilities

of selecting the remaining two members of Congress in our sample of three.

Let us focus on Congressman, l1. We want to find the probability that he will be selected for

our sample, S, of size three. That implies that he will have to be selected on the first draw or

the second draw or on the third draw. If each element of S is selected without replacement with

equal initial probability of selection, then the probability of selecting l1 on the first draw will

be 1

N
“ 1

535
. Later in Section 7, we will see that the provision of selecting an element without
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replacement with equal initial probability of selection produces a simple result. Regardless of

the stage of sampling, the probability of selection remains 1

N
. Consequently, the probability of

selecting l1 on the second draw will be 1

N
, and the probability of selecting l1 on the third draw

will, also, be 1

N
. The probability that Congressman, l1, will be selected in our sample of size

three will be: P pl1 P S3q “ 1

N
` 1

N
` 1

N
“ 3

N
“ π1. Likewise, P pl2 P S3q “ 3

N
“ π2, and

P pl3 P S3q “ 3

N
“ π3. According to Theorem 2,

pτ “ x1

π1

` x2

π2

` x3

π3

“ x1

3

N

` x2

3

N

` x3

3

N

“ x1 ` x2 ` x3

3

N

“ Nsx

which agrees with our intuition. We are led to the next theorem.

Theorem 3 If members of a sample of size n is drawn without replacement with equal initial

probabilities selection from a list of size N, then the estimate of the population total is:

pτ “ Nsx

Notice that the condition of uniform probability of selection stated in Theorem 3 produces a

very simple formula for estimating the population total otherwise if the probabilities of selection

are not uniformly distributed, then we must resort to Theorem 2 which usually produces ex-

tremely complex formulas. For example, suppose that there are only four members of Congress,

that is: N=4 instead of N=535, and suppose the initial probabities are not equal but are the same

ones shown in Table 2 found on page 15. The probability for Congressman, l1, to be selected in

the sample of size three, now, becomes:

P pl1 P S3q “ P pX1 “ 1 or X1 “ 2 or X1 “ 3q

“ 1

3
` 44

135
` 4606

19305

“ 17333

19305

Likewise, P pl2 P S3q “ 38999

42075
and P pl3 P S3q “ 2593

3672
. According to Theorem 2, pτ “ x1

17333

19305

`
x2

38999

42075

` x3

2593

3672

. One can imagine, the extremely complicated formulas for drawing three members

of Congress without replacement with unequal probabilities from a population of 535.

To avoid complicated formulas is the reason why simple random sampling is so popular even

though it might not be the most efficient method of sampling.

6.1 Effect of Finite Population

By independence we mean that P pA|Bq “ P pAq for events A and B. By identically distributed,

the random variables have the same probability distribution which implies that they have the
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same means and variances, i.e. pµ, σ2q. Both properties are essential for deriving the properties

of x̄. Theorem 4 gives the expected value and variance of x̄.

We note that by definition, varpXq “ ErpX ´ ErXsq2s, and based on it varpX ` Y q “
varpXq ` varpY q ` 2covpX, Y q where the co-variance covpX, Y q “ ErpX ´ ErXsqpY ´
ErY sqs. When events A and B are independent, then P pAXBq “ P pAqP pBq so that ErABs “
ErAsErBs and covpX, Y q “ ErpX ´ErXsqsErpY ´ErY sqs. But ErpX ´ErXsqs “ ErXs ´
ErXs “ 0; therefore, when X and Y are independent, covpX, Y q “ 0 which produces the simple

result, varpX `Y q “ varpXq ` varpY q. This is the main benefit of independent events and the

highly desired property of statistical data like survey data. By virtue of i.i.d., then, we are able

to prove the very simple Theorems 4 and 5.

Theorem 4 If X1, X2, . . . , Xn are i.i.d. each with mean µ and variance σ2, and x̄ “
X1`¨¨¨`Xn

n
, then

Erx̄s “ µ and varpx̄q “ σ2

n

Theorem 5 If X1, X2, . . . , Xn are i.i.d. each with mean µ and variance σ2, and s2 “ř
iPS

pxi´x̄q2

n´1
, then

Ers2s “ σ2 and varps2q “ 1

n

ˆ
µ4 ´ n ´ 3

n ´ 1
σ4

˙
where µ4 “ ErpX ´ µq4s

From Theorem 4, we learned that if X1, X2, . . . , Xn are i.i.d. each with mean µ and

variance σ2, and x̄ “ X1`¨¨¨`Xn

n
, then

Erx̄s “ µ and varpx̄q “ σ2

n

Theorem 4 applies to a population of infinite size. In surveys, however, the populations are

finite, though they might be very large. A finite population imposes a constraint on the calcu-

lation of the variance in that if we were to conduct a census of a population we will have had

examined every element in the population, consequently our estimates of the population mean

and of the population variance will be known with certainty. That is, varpsxq “ varpµq “ 0 and

not varpsxq “ σ2

n
according to Theorem 4.

This constraint which a finite population imposes on the variance is taken into account in

Theorem 6.

Theorem 6 If from a finite population of size N, X1, X2, . . . , Xn are i.i.d. each with mean

µ and variance σ2, and x̄ “ X1`¨¨¨`Xn

n
, then

Erx̄s “ µ and varpx̄q “
ˆ
N ´ n

N ´ 1

˙
σ2

n
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Accordingly, the variance of the estimated population total is expressed in Corollary 1

Corollary 1 If from a finite population of size N, X1, X2, . . . , Xn are i.i.d. each with mean

µ and variance σ2, and x̄ “ X1`¨¨¨`Xn

n
, then

Erpτ s “ τ “ Nsx and varppτq “ N2

ˆ
N ´ n

N ´ 1

˙
σ2

n

In both Theorem 6 and its Corollary 1, we still do not know µ and σ2.

It can be proven in a course on sampling that Ers2s “
`

N
N´1

˘
σ2 for a finite population;

therefore, pσ2 “
`
N´1

N

˘
s2 is an unbiased estimator of σ2, because we can now show, Er pσ2s “ σ2.

By direct substitution into
`
N´n
N´1

˘
σ2

n
, we obtain an unbiased estimator of varpsxq, namely

{varpsqx “
ˆ
N ´ n

N ´ 1

˙ pσ2

n
“

ˆ
N ´ n

N

˙
s2

n

These results are summarized in Theorem 7.

Theorem 7 If from a finite population of size N, X1, X2, . . . , Xn are i.i.d. each with mean

µ and variance σ2, and x̄ “ X1`¨¨¨`Xn

n
, then

1. yErssx “ sx and {varpsqx “
`
N´n
N

˘
s2

n

2. yErpsτ “ Nsx and {varppqτ “ N2
`
N´n
N

˘
s2

n

Example 1 Three 4” ˆ 4” square areas were selected at random from a one acre subur-

ban lot. The number of blades of grass were counted in each unit. The counts are: 90, 83, 96.

N=9(43560)=392,040; sx “ 89.6667; s2 “ 42.330; and s=6.5064.

1. yErssx “ 89.6667

2. {varpsqx “
`
392040´3

392040

˘
42.330

3
“ 14.1111 Ñ

b
{varpsqx “ 3.7564

3. yErpsτ “ 392040p89.6667q “ 35, 152, 920

4. {varppqτ “ 3920402
`
392040´3

392040

˘
42.330

3
“ 2.1687 ˆ 1012 Ñ

b
{varppqτ “ 1, 472, 683

Assume that the Central Limit Theorem applies to this problem; therefore, the lower limit

of a confidence interval will be for the sample mean a “ sx ´ tn´1,α
2

b
{varpsqx “ 89.6667 ´

1.96p3.756q “ 82.30 and 89.6667 ` 1.96p3.756q “ 97.02, so that (82.30,97.02) is the 95%

confidence interval for the population mean, µ.
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Similarly for the population total, a “ pτ´tn´1,α
2

b
{varppqτ “ 32, 266, 461 and the upper limit,

b=38,039,379, so that the 95% confidence interval for the total number of blades of grass in the

one acre lot is (32266461,38039379).

Definition 1 The coefficient of variation is

CV “
a
varpestimateq
estimate

Accordingly, for the preceding Example 1,

1. CV of sx “
?

{varpsqx

px “ 3.7564
89.6667

“ .0418 “ 4.18%

2. CV of pτ “
?

{varppqτ
pτ “ 1472683

35152920
“ .0418 “ 4.18%

We see that the CV of sx and the CV of pτ are the same. This is because

CV of pτ “
?

{varppqτ

pτ “
b

N2pN´n
N q s2

n

Nsx “
b

pN´n
N q s2

n

sx “
?

{varppqµ

sx =CV of sx

6.2 Proportions

The example of estimating a population proportion as illustrated in Example 2 uses the property

of a Bernoulli random variable which is characterized by being a mapping of an outcome taken

from a sample space, Ω, of only two outcomes to the number line. Let Ω “ tω1, ω2u. The two

outcomes might be pass-fail, on-off, up-down, 0-1, success-failure. Define X “ 1 to signify

success and X “ 0 to signify failure. Suppose Xi „ bp1, pq, then P ptω P Ω|Xpωq “ 1uq “ p

and P ptω P Ω|Xpωq “ 0uq “ 1 ´ p “ q. We know that ErXs “ p and varpXq “ pq.

Theorem 8 If from a finite population of size N, X1, X2, . . . , Xn are i.i.d. Bernoulli random

variables with probability of success, p. and x̄ “ X1`¨¨¨`Xn

n
, then

1. Ersxs “ p

2. varpsxq “
`
N´n
N

˘
σ2

n
“

`
N´n
N

˘
pq

n

3. yErssx “ pp

4. {varpsqx “
`
N´n
N

˘ pppq
n´1

Example 2 A salesman of a golfing supply house is curious to learn how many students at

the local university use a one iron in one semester. He selected at random 100 students from the

13,000 student body and asked them whether or not the student had used a one iron at least once
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during the previous semester. Only one student reported that he had used a one iron the previous

semester.

Let

xi “
"

1 if the student had used a one iron

0 if a student did not use a one iron

ř
100

i“1
xi “ total number of one irons. In this example,

ř
100

i“1
xi “ 1; therefore, pp “ .01 and

pq “ .99.

We are informed that N=13,000. Consequently, pτ “ Npp “ 13000p.01q “ 130 and

{varppqp “
ˆ
12900

13000

˙ p.01qp.99q
99

“ .00009925

b
{varppqp “ .0096

The 95% confidence interval of pp is

a “ pp ´ 2

b
{varppqp “ 0

b “ pp ` 2

b
{varppqp “ .0292

(0,.0292).

The confidence interval for the population total is N times that which is (0,249). The sales-

man is 95% confident that the number of students at the university who use a one iron is at most

249.

7 Sampling

We want i.i.d. to make the mathematics simple. Even with i.i.d., the formulas can be compli-

cated. Nonetheless, to preserve the property of i.i.d. while drawing the sample will help make it

representative of the population. The process of sampling is a key step in producing a successful

survey. There are different methods of sampling to achieve that end most economically.

1. Suppose the names on the class roster of students are ordered according to the sex of the

student and then within each group ordered by English grades. One scheme of selecting a

sample of ten students to interview about some political opinion would be to draw from

the roster the first ten men. Would this sample be representative of the population of GW

students?
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2. Suppose ten students are chosen by asking the first student to recommend a classmate

who has a similar political opinion and then ask the second student to recommend another

classmate and so on until ten students are selected. Would the responses of the survey be

independent of each other?

3. Suppose American students responded to questions on politics based on American politi-

cal tradition while foreign students responded based on their respective country’s political

traditions. Can one assume that the responses are identically distributed?

When designing a survey, these kinds of concerns must be addressed, in order to apply simple

statistical formulas to the data otherwise a new statistical theory must be derived to accommodate

the properties of the gathered survey data. In large government surveys like the United States

Decennial Census, new statistical methods are derived as a result of new financial constraints

or changing demographic characteristics of the country. The researchers, nonetheless, strive to

design these surveys based on the concept of i.i.d. observations.

There are two fundamental methods of sampling:

1. Draw an element from the list for the sample and replace the drawn item to the list for

possible selection again.

2. Draw an element from the list for the sample and do not replace the drawn item to the list

so that it cannot be possibly selected again.

The first method is called sampling with replacement and the second method is call sampling

without replacement. If the sampling is done at random, meaning that any sample drawn is

equally likely to be selected, then the methods are called random sampling with replacement and

random sampling without replacement. Bear in mind that not all survey samples are drawn at

random. A popular method of drawing a sample is quota sampling performed in market research.

In this method, an enumerator greets customers at a shopping mall entrance and asks them to

participate in a survey. Of course, many customers will decline. The enumerator’s job is done

when he interviews a certain number of customers. How the customers are selected has some

semblance of randomness, but quota samples are notorious for producing biased data. Yet, for

the purposes of market research, they are deemed to be adequate and inexpensive.

Suppose a list has only four elements. Image that you are at a carnival arcade and this par-

ticular game makes you try to grab a prize using some mechanical apparatus. In the bin are four

objects. Suppose that they are identical objects except that they are labeled, A, B, C, and D.

Because they are physically identical, it would make sense that the probabilities of successfully

grabbing the objects are the same. In other words, the process of selecting an object is based on

equal initial probabilities of selection.

Suppose instead that the objects are different. Perhaps one is tiny and expensive and another

is large and cheap. In this case, the probabilities of selection are not equal. We would say that

the process of selecting an object is based on unequal initial probabilities of selection.
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Survey samples are drawn without replacement so that we might randomly draw a sample

with equal initial probabilities of selection without replacement or we might randomly draw a

sample with unequal initial probabilities of selection without replacement.

Consider the first case where the sample is drawn from a list of four objects, A, B, C, and D,

without replacement with equal initial probabilities of selection. Let A1 be the event of drawing

object A on the first draw, A2 be the event of drawing object A on the second draw, and so on. By

equal initial probabilitiesP pA1q “ P pB1q “ P pC1q “ P pD1q “ 1

4
. Suppose object B is selected

in the first draw, that means that objects A, C, and D are left, because we do not replace the

objects in this sampling scheme. On the second draw, P pA2q “ 1

3
given that B was taken on the

first draw or in other words P pA2|B1q “ 1

3
. Suppose object C was selected on the second draw,

that leaves objects A and D eligible to be selected on the third draw; therefore, P pA3|B1, C2q “ 1

2

and finally if object D is selected on the third draw, there will only be object A left and the

probability of selecting it on the fourth drawn will, obviously be 1 that is, P pA4|B1, C2, D3q “ 1.

We see that when selecting a sample without replacement, the probabilities change at each stage

of the process. In the physical sciences where scientists study chemical reactions or metallurgical

properties or measure the spectra of stars, they are dealing with essentially an infinite number

of molecules or cosmic rays and sampling without replacement is an unimportant concern for

them. In the social sciences, however, researchers deal with finite populations of people so that

sampling without replacement poses a significant complication in doing a survey.

What is the probability that on the second draw, we draw object A? We want to find P pA2q.

To calculate the probability, we will use conditional probability.

P pA2q “ P pA2|A1qP pA1q ` P pA2|B1qP pB1q ` P pA2|C1qP pC1q ` P pA2|D1qP pD1q

“ 0 ` P pA1q
1 ´ P pB1q

P pB1q ` P pA1q
1 ´ P pC1q

P pC1q ` P pA1q
1 ´ P pD1q

P pD1q

For example, suppose P pA1q “ P pB1q “ P pC1q “ P pD1q “ 1

4
, then

P pA2q “ 0 ` P pA1q
1 ´ P pB1q

P pB1q ` P pA1q
1 ´ P pC1q

P pC1q ` P pA1q
1 ´ P pD1q

P pD1q

“
ˆ

1

4

1 ´ 1

4

˙
1

4
`

ˆ
1

4

1 ´ 1

4

˙
1

4
`

ˆ
1

4

1 ´ 1

4

˙
1

4

“ 1

4

Suppose we draw a sample at random where the initial probabilities of selection are equal.

If there are n objects, then P pXk “ mq “ 1

n
where tω P Ω|Xpωqk “ mu is the event that object

k is selected on draw m. That is, P pXk “ 1q “ 1

n
implies P pXk “ mq “ 1

n
for all draws. In this

nice case where the probabilities of selection regardless of the stage of drawing the object are
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the same 1

n
, we give the common name of simple random sampling. Simple random sampling is

another name for sampling with equal initial probabilities without replacement.

13



8 More Details on Sampling

Table 1: Probability of Selecting an Element without Replacement with Equal Initial Probabili-

ties

Elements

Draw A B C D

Initial 1

4

1

4

1

4

1

4

2 1

4

1

4

1

4

1

4

3 1

4

1

4

1

4

1

4

4 1

4

1

4

1

4

1

4

Drawing a sample is the crucial operation of a survey. In that process, the size of the sample

must first be determined according to the kind of sampling that will be performed, in order to

achieve certain criteria. Generally, the size of a sample must be sufficiently large as to produce

an estimate, the precision of which does not exceed a prescribed coefficient of variation (CV)

while being as small as possible, in order to save money.

Simple random sampling is one of many ways of drawing a sample. Its popularity can be

traced to that specific property whereby simple random sampling leads to the relatively simple

derivation of a formula for an estimator. Typically, the estimator is for the population total,

mean, variance or some ratio estimator. Simple random sampling is the common term that is

used for the process of sampling from a finite population without replacement with equal initial

probabilities. The outstanding feature of this way of sampling is that the probability of selecting

an element is the same at each stage of the process. On the contrary, the probability of selecting

an element does change with each draw when sampling is performed without replacement with

unequal initial probabilities. The probabilities of selecting elements from a population of four

objects with equal initial probabilities are shown in Table 1. Unlike Table 1 where all the entries

are the same, the complicated fractions seen in Table 2 illustrate the consequences of sampling

without replacement with unequal initial probabilities of selection.

To give an example which Table 2 might serve as an illustration, let the probability of select-

ing object C on the first draw be 1

6
and let the probabilities of drawing the other objects on the

first draw be as shown in Table 2. Suppose the identity of the first object that was drawn is not

14



Table 2: Probability of Selecting an Element without Replacement with Unequal Initial Proba-

bilities

Elements

Draw A B C D

Initial 1

3

2

5

1

6

1

10

2 44

135

73

225

23

108

41

300

3 4606

19305

8518

42075

1199

3672

1813

7800

4 1972

19305

3076

42075

1079

3672

4141

7800

revealed and it is excluded from the sampling so that it cannot be selected again, then the prob-

ability of selecting object C on the second and only on the second draw is 23

108
. Suppose, once

again, that the identities of the first two objects that were drawn are not revealed, and they are

excluded from the sampling, then the probability of selecting object C on the third and only the

third draw is 1199

3672
. With three out of four objects already drawn, one object remains. The proba-

bility that the remaining object is object C is 1079

3672
. Computing these numbers will be discussed

later when there will be ample space to dwell on the abstruse nature of dealing with this kind of

sampling. But, in the case where the initial probabilities of selection are equal, the probability

of selecting any object at any stage of the process is 1

4
as shown in Table 1. It is not difficult to

reason that, in both cases, the sums of each row and each column equal 1.

One can imagine the insurmountable number of calculations that a sample of the size which

is typically drawn for a survey would required, in order to find the probability of selecting a

single element, if the initial probabilities were not equal.
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9 Stratification

S2

S1

L1

S

L2

P

L

Figure 1

By referring to Figure 1, suppose a list, L is stratified into two strata, L1 and L2. Specifically,

suppose L1 “ ti P L|xi ď 30u and L2 “ ti P L|xi ą 30u We see that the stratification depends

on the number 30. If that number is changed, then the stratification will, also, change. If the

boundary of L1 and L2 changes, then S1 and S2 will have to be different. Choosing the defining

boundaries of strata is usually done by trial and error in order to produce the smallest variance

for a given sampling size, for the main purpose of stratification is to reduce the variance of an

estimate.

Typically, by means of simple random sampling, a sample, S1, is drawn from L1 and likewise

a second sample, S2, is drawn from L2. We note that L1 and L2 are disjoint. The property of

disjoint strata greatly simplifies the mathematics, because if A and B are disjoint events, then

P pA Y Bq “ P pAq ` P pBq which implies that varpX ` Y q “ varpXq ` varpY q.

Based on Theorem 3, pτi “ Nisyi is the population total of stratum i. The sum of them over all

strata will produce an estimate of the population total, that is,

pτ “
hÿ

i“1

Ni syi

The estimate of the population mean, µ, is

pµ “ pτ
N

“
řh

i“1
Ni syi

N

16



which is the weighted average of the strata totals by strata sizes.

Theorem 9 on making estimates based on a stratified list immediately follows the preceding

discussion.

Theorem 9 Let yij be the measurement taken of element j in stratum i. Suppose there are h

strata with corresponding size Ni and ni for stratum i of the sample size and denote syi “
řni

j“1
yij

ni
.

If the strata are disjoint, the observations are i.i.d. and simple random sampling is used to draw

the sample from each stratum, then

pµ “ ȳ “ N1ȳ1 ` . . . ` Nhȳh

N
(2)

{varpsqy “ 1

N2

hÿ

i“1

N2

i

ˆ
Ni ´ ni

Ni

˙
s2i
ni

(3)

pτ “ N1ȳ1 ` . . . ` Nrȳr (4)

{varppqτ “
hÿ

i“1

N2

i

ˆ
Ni ´ ni

Ni

˙
s2i
ni

(5)

9.1 Example Involving Stratified Sampling

S1 “ t10, 15, 9, 13, 20, 16u
S2 “ t105, 200, 150u
S “ t10, 15, 9, 13, 20, 16, 105, 200, 150u where S would have been the sample if the list

had not been stratified.

For this example, suppose the size of L1 is 970 and the size of L2 is 30, so that the size of

the entire list,L is 1,000.

Table 3: Stratified Sample

Sample of Stratum 1 Sample of Stratum 2 S

List Size N1 “ 970 N2 “ 30 N “ 1, 000

Sampling Size n1 “ 6 n2 “ 3 n “ 9

Sample Mean x̄1 “ 13.833 x̄2 “ 151.66 x̄ “ 59.77

Sample Variance s21 “ 4.072 “ 16.5649 s22 “ 47.522 “ 2258.15 s2 “ 72.92 “ 5314.41

CV .4047

We see in Table 3 that the variance of the sample drawn from the unstratified list is larger

than either sample variance gotten from the stratified samples, S1 and S2.
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The estimate of the population mean is

pµ “ N1x̄1 ` N2x̄2

N
(6)

And because the strata are disjoint,

{varppqµ “ 1

N2

`
N2

1
varpx̄1q ` N2

2
varpx̄2q

˘

“ 1

N2

ˆ
N2

1

ˆ
N1 ´ n1

N1

˙
s2
1

n1

` N2

2

ˆ
N2 ´ n2

N2

˙
s2
2

n2

˙
(7)

According to equation (6), pµ “ 970p13.833q`30p151.66q
1000

“ 17.96 and according to equation (7)

{varppqµ “ 1

10002

ˆ
970

2

ˆ
970 ´ 6

970

˙
4.072

6
` 30

2

ˆ
30 ´ 3

30

˙
47.522

3

˙

“ 3.19128

So that CV “
?
3.19128
17.96

“ .099

Suppose the list had not been stratified, then sx “ 59.77 and s2 “ 5314.41 and, by Theorem 7,

pµ “ 59.77 and pσ2 “ N´n
N

s2

n
“ 1000´9

1000

5314.41
9

“ 585.1756. The corresponding CV “
?
585.1756
59.77

“
24.1904
59.77

“ .4047 We see that that CV based on the stratified list, CV=.099, is four times smaller

than the CV of pµ based on the non-stratified list, CV=.4047.

10 Determining an Appropriate Sampling Size

Given a set of experimental data and the method from which the set of data was obtained, the

sample mean is: x̄ “
řn

i“1
xi

n
and the sample variance is: s2 “

řn
i“1

pxi´x̄q2

n´1
. They are common de-

scriptive statistics of the data. If it is assumed that the measurements are distributed as a Normal

distribution i.e., xi „ Npµ, σ2q, then the estimate of the population mean is: pµ “ x̄; the estimate

of the population variance is: pσ2 “ s2 provided that the measurements are taken independently

and they are not biased. Based on the data and the assumption that the measurements can be

adequately described by a Normal distribution, then the 100p1 ´ αq% confidence interval for µ

is: ˆ
x̄ ´ s?

n
tn´1,α

2
, x̄ ` s?

n
tn´1,α

2

˙

Sometimes, the distribution of xi is unknown in which case the confidence interval is an ap-

proximate one as justified by the Central Limit Theorem. In order to avoid controversy over the

ambiguity of the kind of distribution which is presumed to describe the measurements, another

measure of precision is used and that is called the coefficient of variation (CV).
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The length of a confidence interval is: L “ 2s?
n
tn´1,α

2
. The relative length of the confidence

interval to the estimated mean is:
L

x̄
“

2s?
n
tn´1,α

2

x̄

The essential part of the relative length is the quotient:
s?
n

x̄
. It is called the coefficient of variation

(CV) of x̄. Equivalently, in terms of the length of a confidence interval,

CV “ L

2x̄tn´1,α
2

Its appeal stems from not having to specify a probability distribution which governs the measure-

ments. The complexities, particularly found in surveys, in describing the nature of the measure-

ments prohibit an easy derivation of a quantile like the t quantile which constitutes an essential

component in constructing a confidence interval. In these situations, confidence intervals are

not constructed rather the CV provides the measure of precision for an estimate. In general,

CV “
?

varpestq

est
for some estimate, est.

10.1 Case I

Let CV “ s?
nx̄

and suppose x̄ and s were found from a previous experiment, then when the de-

sired CV is specified by the manager of the project, the size of the sample for the new experiment

can be solved algebraically i.e.,

n “
´ s

CV x̄

¯2

“
ˆ
2stn´1,α

2

L

˙2

(8)

As this discussion reveals, in order to find the right size of a sample, the functional relationship

of the variance on n must be known. Therefore, when designing an experiment, its theory must

have the formula for the estimated variance of the statistic which is being sought.

Example 3 A previous study which examined the likelihood that a woman’s enrollment in

welfare was caused by abusive physical treatment from her common-law husband, a sociologist

found that the proportion of such women who received a high school diploma is x̄ “ .69 and

s=.46. Find the size of a sample of these poor unmarried women who received only a high school

diploma such that CV=2%.

n “
ˆ

.46

p.02qp.69q

˙2

“ 1111

According to the sociologist’s previous study, the size of the sample which had been drawn

for that preliminary study was only 242. We would advise the sociologist that, if he wants a more

precise estimate, he must draw a much larger sample than 242 for his next survey. A calculation
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of the sampling size enables a researcher to reckon the cost of doing the larger subsequent study

while at the same time being confident that the resulting estimate will achieve the prescribed

precision which his research requires.

10.2 Case II

In the natural sciences, the size of the population is infinite, but in the social sciences and busi-

ness, the size of the population is usually finite. In the case of drawing a sample from a population

of finite size, the formula for the variance of x̄ must take into account the size of the population,

N, as can be seen in equation (9) for the estimated variance of x̄.

{varp¯qx “ N ´ n

N

s2

n
(9)

We note in passing that as N Ñ 8, then {varp¯qx “ s2

n
. The formula given by equation

(8) applies to the case of an infinite population. For populations of finite size, the CV becomes

CV “
b

pN´n
N

q s2

n

x̄
. Solving for n produces the appropriate formula for finding the right sampling

size for a finite population.

n “ s2

CV 2x̄2 ` s2

N

To check our answer with formula (8), we observe that when N Ñ 8, n “
`

s
CV x̄

˘2
which was

used earlier.

Example 4 Assume that the size of the population of poor women suitable for this research

study is 100,000, find the size of a sample which will produce a sample mean with a CV of 2%.

From a previous research study, it was found that x̄ “ .69 and that s=.46; therefore,

n “ .462

.022p.69q2 ` .462

100000

“ 1099

The sampling size is smaller in the case of a finite population than in the first example, because

the factor, N´n
N

, which appears in equation (9), is less than one. That factor drives the calculation

of the sampling size to make an estimated variance of the sample mean conform to a finite

population.

10.3 Case III

A behavioral experiment suffers from unco-operative subjects. To incorporate that aspect of a

survey into the calculation of finding an appropriate sampling size of a sample, let ρ denote the
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rate of meeting co-operative subjects who will provide useful responses. Ideally, ρ should equal

one. In other words, there should be 100% co-operation, but in practice ρ might equal 80 percent

i.e., 20 percent of those who are approached for an interview refuse to co-operate or are unable to

participate. ρ is called the response rate. Often, survey statisticians talk about the non-response

rate which is equivalent to 1 ´ ρ. The formula for the variance taking into account the response

rate now becomes:

CV “

b`
N´ρn

N

˘
s2

ρn

x̄

When that equation is solved for n:

n “
s2

ρ

CV 2x̄2 ` s2

Nρ

(10)

Example 5 Use the same data as before in Example 4, but assume that the rate of response

from the women is .60. Find the sampling size, n.

n “ .462{.60
p.02q2p.69q2 ` .462

p100000qp.60q

“ 1818

This sampling size takes into account the information from a previous study, the size of the

population, and the rate of useful responses. A comprehensive theory of determining a sampling

size falls under the discipline of the design of experiments. Suppose it costs $10,000,000, for

example, to make one observation as in measuring the accuracy of a launched submarine bal-

listic missile. Or consider that some surveys which are sponsored by the National Institute of

Health cost $200,000,000 and last 30 years. Finding the right sampling size which will produce

sufficient and informative data over the span of 30 years requires the opinion of many experts in

addition to complicated formulas, if any can be derived.

Determining an appropriate sampling size is not easy. If knowledge is obtained from a previ-

ous experiment or extensive professional experience is available, then certain characteristics of

the population may be estimated from which a sampling size can be computed. Lacking expert

knowledge and information which might be available from previous studies, an experimenter

will probably be inclined to do some preliminary experiments in order to gain some knowledge

of the population after which a more general, complete, and expensive experiment will follow.

Although the use of the coefficient of variation avoids controversy which could arise when

attempts are made to ascribe a probability distribution to an observation it might, nevertheless,

be desirable to determine that size of a sample which will produce a confidence interval of a

certain prescribed length. In that case, we will substitute for CV in equation (10) the formula

CV “ L
2x̄tn´1, α

2

. This formula was obtained by combining CV “
s?
n

x̄
and the length of the
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confidence interval, L “ 2s?
n
tn´1,α

2
. After performing the substitution for CV, equation (10) can

be written as shown in equation (11) as a function of the length of the confidence interval and

the quantile for the presumed distribution which describes measurement, xi.

n “
s2

ρ

L2

4t2
n´1, α

2

` s2

Nρ

(11)

Suppose that the information which is given in Example 7 was the product of a cursory

review of 100 grade point averages such that x̄ “ 3.5 and s “ .5.

Example 6 From 1,000 patient records at a hospital, a sample of size 20 is drawn at random.

Random meaning that any possible combination of 20 records, i.e.
`
1000

20

˘
“ 3.394828ˆ 1041

is equally likely to be drawn.

Use a table of random numbers or divide the set of 1,000 records into 50 groups pick a

random starting point, #23 in the first group. Pick every 50th record starting from that one, so

#23, #73, #123, . . . . This is an example of systematic sampling.

Looking at some account billing, based on the sample, x̄ “ $94.22 and s2 “ 445.21. Esti-

mate µ, the population mean.

n “ 20

pµ “ $94.22

{varppqµ “
ˆ
N ´ n

N

˙
s2

n

“
ˆ
1000 ´ 20

1000

˙
445.21

20
“ 21.815

b
{varppqµ “

?
21.815 “ 4.670

CV “ 4.670

94.22
“ 4.9%

Question 1 What is the total hospital bill?
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Answer 1

pτ “ Nx̄ “ 1000p94.22q “ $94, 220

{varppqτ “ N2
N ´ n

N

s2

n

“ 1000
2

ˆ
1000 ´ 20

1000

˙
445.21

20
“ 21, 815, 290

b
{varppqτ “

a
21, 815, 290 “ 4670.68

CV “ 4670.68

94220
“ 4.9%

Question 2 Find the sampling size, n, to achieve the prescribed CV=2%. Assume ρ “ 1.

Answer 2

n “
s2

ρ

CV 2x̄2 ` s2

Nρ

“
445.21

1

.022p94.222q ` 445.21
1000

“ 111.4

A sampling size of 112 should be large enough to obtain a CV of 2%.

Example 7 The grade point averages (GPA) of a sample of 100 students were obtained. De-

note the GPA of a student by Xi. From the data, it was found that x̄ “ 3.5 and s “ .5. Find the

90% confidence interval about the population mean.

The problem requires the computation of the 90% confidence interval. Upon doing the

calculation, the 90% confidence interval is given by (3.417, 3.583). The length of this con-

fidence interval is: L=3.583-3.417=.166 and it corresponds to a CV of CV “ L
2x̄tn´1, α

2

“
p3.583 ´ 3.417q{p2 ˚ 3.5 ˚ 1.66q “ .142. Because the researcher does not have access to the

registrar’s records, he plans instead to interview students, for the purpose of learning their grade

point averages. The researcher knows that 13,000 students are enrolled in the university but from

prior experience he knows that about 30% of the students whom he will interview will refuse

to co-operate. He deemed the length of the confidence interval which was obtained from his

preliminary study to be too long; consequently, to suit the requirements of his research, the re-

searcher wants to interview enough students to produce a 90% confidence interval such that the

length of the resulting confidence interval will be L=.1. The rate of refusal must be converted

to the rate of response: ρ “ 1 ´ .3 “ .7. All the necessary components of equation (11) are

now known except for tn´1,α
2

. Since we do not know n, we cannot find a value for tn´1,α
2
. To

circumvent this difficulty, we instead assume the worst case by taking n “ 8, that is, we will

use t8,.05 “ 1.644. In the example under consideration,
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n “
.52

.7

.12

4p1.644q2
` .52

p13,000q.7

“ 373.1983 « 374 (12)

Upon reflecting on equation (11) and on the preceding calculation of n, it becomes obvious

that n is actually a random variable, because x̄, s2, and ρ are all estimates based on previous

studies. The implication is that n is not a deterministic quantity. It is an educated guess. For

this reason, among others, the designing of an informative experiment at the least cost is a

great challenge. To give an example of the computational challenge which statisticians face in

designing a typical operational government stratified multivariate survey, the formula for finding

an optimal sampling size is:

min
ř

hPstrata

chnh

Qř
hPstrata

NhpNh ´ pρhnhq s2
hk

pρhnh
ď pCVk pτkq2 @k

0 ď nh ď Nh

It illustrates the complexity of just one dimension of designing a large experiment. In essence,

we have come full circle in the sense that all of the assigned problems presented in this course

have been predicated on having good data already given to us; however, sets of data can only

come from well designed experiments which, in turn, depend on previously conducted stud-

ies, and so on. In practice, little inexpensive experiments lead to more extensive experiments

which lead to pilot studies which lead ultimately to full scale production. To accomplish that

progression of complexity most efficiently and accurately, the science of statistics provides the

indispensable methods which we have only briefly described.
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Appendix A: Estimated Variance of the Population Propor-

tional

We formulate an estimator of the population total by defining the Bernoulli random variable, Xi,

such that

Xi “
"

1 if the subject is measured

0 otherwise

Because Xi is either 0 or 1, X2
i is, also, 0 or 1; therefore,

řn

i“1
X2

i “ řn

i“1
Xi. This is a

useful identity when manipulating the algebra of s2.

By definition of s2,

s2 “

ř
iPS

pXi ´ sXq2

n ´ 1

By simple algebra, s2 “
ř
iPS

X2

i ´n sX2

n´1
. Because X2

i “ Xi as noted above, s2 “
ř
iPS

Xi´n sX2

n´1
. Then

s2 in the case of Bernoulli random variables becomes s2 “ n sX´n sX2

n´1
. Since pp “ sX , then s2 “

npp´npp2
n´1

“ npppq
n´1

.

We take expectations of the last expression to get: n
n´1

Erpppqs “ Ers2s “
`

N
N´1

˘
σ2. We solve

for σ2 to get σ2 “
`
N´1

N

˘ `
n

n´1

˘
Erpppqs. Or we may assert that pσ2 “

`
N´1

N

˘ `
n

n´1

˘
pppq.

Based on our work with sX , we know that {varpsqx “
`
N´n
N´1

˘ xσ2

n
. See page 8. But pp “ sX;

therefore,

{varppqp “
ˆ
N ´ n

N ´ 1

˙ pσ2

n
(13)

From above, we derived that pσ2 “
`
N´1

N

˘ `
n

n´1

˘
pppq which we substitute into equation (13)

to get our final result.

{varppqp “
ˆ
N ´ n

N

˙ pppq
n ´ 1

(14)
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Appendix B: Probability of Selecting an Element

The formula for computing the probability that object, k, taken from a population of size, N, will
be selected on the mth draw is quite complicated. The formulas for each successive stage of the
sampling for a simple example will reveal the patterns in the formula in the general case. To that
end, let pkm be the probability of drawing object k from a population of four objects on exactly
the mth draw with initial probabilities p1, p2, p3, and p4 like the ones illustrated in Table 2. The
probability of drawing object C, for example, on the first draw is: p31 “ p3 “ 1

6
; on the second

draw,

p32 “
p3

1 ´ p1

p1 `
p3

1 ´ p2

p2 `
p3

1 ´ p4

p4 “
23

108

on the third draw,

p33 “
p3

1 ´ p1 ´ p2

ˆ
p1

p2

1 ´ p1

` p2

p1

1 ´ p2

˙
`

p3

1 ´ p1 ´ p4

ˆ
p1

p4

1 ´ p1

` p4

p1

1 ´ p4

˙

`
p3

1 ´ p2 ´ p4

ˆ
p2

p4

1 ´ p2

` p4

p2

1 ´ p4

˙
“

1199

3672

on the fourth draw,

p34 “
p3

1 ´ p1 ´ p2 ´ p4

ˆ
p1

p2

1 ´ p1

p4

1 ´ p1 ´ p2

` p1

p4

1 ´ p1

p2

1 ´ p1 ´ p4

`p2

p1

1 ´ p2

p4

1 ´ p1 ´ p2

` p2

p4

1 ´ p2

p1

1 ´ p2 ´ p4

` p4

p1

1 ´ p4

p2

1 ´ p1 ´ p4

`p4

p2

1 ´ p4

p1

1 ´ p1 ´ p4

˙
“

1079

3672

Suppose that if instead of four objects, there are N objects in the sampling frame, then the formulas

become the following:

pk1 “

0! termhkkikkj
pkloomoon

pN´1

0
q terms

pk2 “
pk

1 ´ p1

1! termhkkikkj
p1 ` ¨ ¨ ¨ `

pk

1 ´ pN
pN

loooooooooooooooooooomoooooooooooooooooooon
pN´1

1
q terms

pk3 “
pk

1 ´ p1 ´ p2

2! termshkkkkkkkkkkkkkkikkkkkkkkkkkkkkjˆ
p1

p2

1 ´ p1

` p2

p1

1 ´ p2

˙
` ¨ ¨ ¨ `

pk

1 ´ pi ´ pj

ˆ
pi

pj

1 ´ pi

` pj
pi

1 ´ pj

˙
` ¨ ¨ ¨

loooooooooooooooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooooooooooooooon
pN´1

2
q terms
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pk4 “
pk

1 ´ p1 ´ p2 ´ p3

3! termshkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkjˆ
p1

p2

1 ´ p1

p3

1 ´ p1 ´ p2

` ¨ ¨ ¨ ` p3

p2

1 ´ p3

p1

1 ´ p3 ´ p2

˙
` ¨ ¨ ¨

looooooooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooooooon
pN´1

3
q terms

pkm “
pk

1 ´ p1 ´ p2 ´ ¨ ¨ ¨ ´ pm´1

pm´1q! termshkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkjˆ
p1

p2

1 ´ p1

p3

1 ´ p1 ´ p2

¨ ¨ ¨
pm´1

1 ´ p1 ´ p2 ´ ¨ ¨ ¨ ´ pm´2

` ¨ ¨ ¨ ` ¨ ¨ ¨
loooooooooooooooooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooooooooooooooooon

pN´1

m´1
q terms

To write the last equation more compactly, some special notation must be invented. Let Sn

denote the symmetric group on n letters. Each element of Sn represents a unique permutation of

n letters. There are n! such permutations represented by Sn. For example, there are six permuta-

tions that comprise the group, S3 “ tσ1, σ2, σ3, σ4, σ5, σ6u. They are defined by: σ1p123q “ 123;

σ2p123q “ 213; σ3p123q “ 231; σ4p123q “ 321; σ5p123q “ 132; σ6p123q “ 312.

There are
`
n

k

˘
ways to choose k objects from a set of size n. Let Cn

mpkq be the collection of the

subsets of size m that can be drawn from t1, 2, . . . , nu minus element, k. Suppose, for example,

that there are 5 objects, t1, 2, 3, 4, 5u, then C5
3
p2q “ t134, 135, 145, 345u. The cardinality of

CN
m pkq is |CN

m pkq| “
`
N´1

m

˘
. Let the pN ´ 1q ˆ 1 vector, i, be an element of CN

m pkq, then the

general expression for pkm can be written as:

pkm “ pk

ÿ

iPCN

m´1
pkq

1

1 ´ pi1 ´ pi2 ´ ¨ ¨ ¨ ´ pim´1

¨
˝ ÿ

σPSm´1

pσpi1q

pσpi2q

1 ´ pσpi1q
¨ ¨ ¨

pσpim´1q

1 ´ pσpi1q ´ ¨ ¨ ¨ ´ pσpim´1q

˛
‚ (15)

By having pkm written in a more compact notation, it will be much easier to prove Theorem

10.

Theorem 10 If the initial probabilities are equal when drawing a sample randomly without

replacement from a finite population of size N, then the probability of drawing element, k, on the

mth draw is: pkm “ 1

N
@m ď N

Proof : By hypothesis, the initial probabilities are equal, that is: p1 “ p2 “ ¨ ¨ ¨ “ pN “ 1

N
.

In other words, regardless of the permutation that would be done on the indices, pσpiq “ 1

N
.

Substituting these values into equation (15) gives:
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pkm “ 1

N

ÿ

iPCN
m´1

pkq

ˆ
1

1 ´ m´1

N

˙ ˜ ÿ

σPSm´1

1

N

1

N

1 ´ 1

N

1

N

1 ´ 1

N
´ 1

N

¨ ¨ ¨
1

N

1 ´ m´2

N

¸

“ |CN
m´1

pkq|
ˆ

1

N

1 ´ m´1

N

˙
|Sm´1| 1

N

1

N ´ 1

1

N ´ 2
¨ ¨ ¨ 1

N ´ m ` 2

“
ˆ
N ´ 1

m ´ 1

˙
1

N ´ m ` 1
pm ´ 1q!pN ´ m ` 1q!

N !

“ pN ´ 1q!
pm ´ 1q!pN ´ mq!pm ´ 1q!pN ´ mq!

N !

“ 1

N

�
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