1 Computer Assignment 1

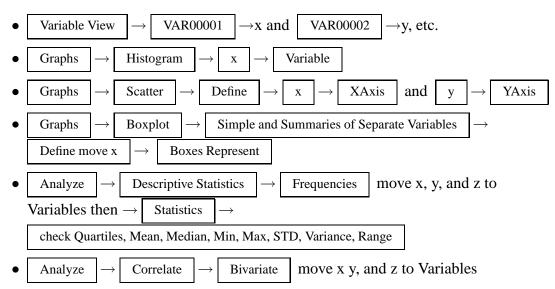
Use SPSS to do the computations. Print the SPSS output and submit it. Use the SPSS to answer the questions.

1. At the beginning of the semester, the difficulty of counting was illustrated by counting the number of e's on a page. Spring semester STAT51 students counted the number of e's, and they reported:

188	212	1432	318	209	243	378	233	250	247	290	201
306	232	267	300	240	400	402	212	308	296	280	200
405	241	257	290	265	379	311	379	300	380	215	375
427	1512	134	333	242	378	300	382	255	327	240	312
294	238	250	234	284	261	318	229	248	416		

- (a) Make a histogram.
- (b) Make a box plot.
- (c) What is the size of sample, n.
- (d) Compute the sample mean, \bar{x} .
- (e) Compute the sample median.
- (f) Compute the sample variance, s^2 .
- (g) Identify any outliers.
- 2. Construct Correlation Matrix

Student	IQ	Anxiety	Exam Scores
1	140	14	42
2	130	20	44
3	120	29	35
4	119	6	30
5	115	20	23
6	114	27	27
7	114	29	25
8	113	30	20
9	112	35	16
10	111	40	12


- (a) Construct the correlation matrix.
- (b) Which variables are positively correlated and which ones are negatively correlated?
- 3. Find the correlation matrix for the following set of data.
 - (a) Which variables are positively correlated and which ones are negatively correlated?

Sweet	Sour	Bitter
15.02	346.22	17.23
12.48	404.41	17.55
14.28	364.06	17.95
14.67	359.25	17.66
13.68	349.13	15.96
16.69	250.51	15.00
17.28	259.72	14.48
15.58	368.54	18.16
15.93	286.62	14.75
13.79	314.14	14.57
11.78	407.80	16.87
10.97	392.60	15.18

State	1	2	3	4	5	6	7	8	9	10	11	12	13
EBI (x)	61	64	47	45	42	38	34	35	45	45	43	51	41
Eating out (y)	2.6	2.2	2.5	2.3	2.5	2.4	1.5	2.0	2.4	3.2	2.7	2.2	2.1

- 4. The *effective buying income*" (EBI) of a family and the amount of money that a family spends on eating out according to a marketing economist are related by a linear fixed effects model. The following table of data show s the average EBI and the average expenditure on eating out for thirteen states in thousands of dollars.
 - (a) Plot the data. Use EBI for the x variable and use Eating out as the y variable.
 - (b) Is there something obvious in the data?

Recipes

