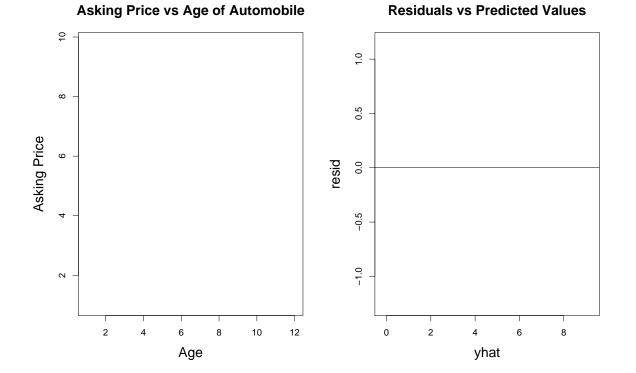
Homework 9

1. Six students were interviewed in 1957 in Moscow, U.S.S.R. about their statistics and English grades. The following information was obtained:

Statistics Grade	70	92	80	74	65	83
English Grade	74	84	63	87	78	90

- (a) Plot the data. Let x be the statistics grade and y be the English grade. Assess the plot as to whether statistics grades are directly proportional to English grades.
- (b) Assert that a linear relation exits between the two grades. Write the linear model that describes your assertion. Be sure to state the probability distribution which you are assuming for ϵ .
- (c) Compute the least squares estimates of β_0 and β_1 .
- (d) Suppose everyone in STAT51 will get a statistics grade of 90. Estimate the sample average of the English grades that will be given at the end of the semester to the same class of STAT51 students.
- (e) Compute the 95% confidence interval of the estimate of that predicted sample average.
- (f) Forget about everyone else; predict your English grade based on the fitted least squares line, supposing that you will receive a statistics grade of 95.
- (g) Compute the 95% confidence interval of the estimate of your English grade.
- (h) Do you trust the model? Explain your answer.
- 2. You are planning to sell a used 2004 automobile and want to establish an asking price that is competitive. From a review of newspaper advertisements for used cars, you collect the following data where the asking price is in thousands of dollars and age is in years before the present:


Age of car (x)	1	1	2	3	3	4	7	8	9	10	11	12
Asking Price (y)	9.8	8.9	8.8	7.7	8.4	6.0	3.4	2.0	1.5	1.6	1.4	1.0
$\widehat{E[y]}$	9.23		8.38	7.53	7.53		4.11		2.41	1.56	.70	-0.14
$\widehat{\epsilon}$	0.57	33	.42					-1.26				1.14

$$\sum_{i=1}^{12} x_i = 71 \quad \sum_{i=1}^{12} x_i^2 = 599 \quad \sum_{i=1}^{12} x_i y_i = 205.3 \quad \sum_{i=1}^{12} y_i = 60.5 \quad \sum_{i=1}^{12} y_i^2 = 441.87.$$

- (a) Write the linear model:
- (b) $SS_{xx}=$
- (c) $SS_{xy}=$
- (d) Given that $\hat{\beta}_0 = 10.089986$ and $\hat{\beta}_1 = -0.853237$, enter the remaining values for $\widehat{E[y]}$ in the table.
- (e) Enter the remaining values for $\hat{\epsilon}$ in the table.
- (f) Calculate SSE =

Based on your set of data and on the asserted linear model, what would be a good asking price, y_p , for your three year old car i.e.,

- (g) Compute $\widehat{E[y_p]}$ =
- (h) Compute the 95% confidence interval of $E[\widehat{E[y_p]}]$.
- (i) Plot the data.

- (j) Plot the residuals versus predicted values.
- (k) Do these two plots indicate that the model is a good model? Explain your answer.
- (1) A common transformation which is used to rectify a bad plot of residuals versus predicted values is the square root transformation. The least squares fitted line for a square root

transformation is: $\widehat{\sqrt{y_p}} = 3.3159605 - 0.2064453x_p$. Use this model to estimate the asking price, y_p , when the age of the car is $x_p = 3$.