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Introduction

Manipulating vectors, matrices, and data frames, in order to analyze data, lies at the heart ofR.
TheR project is a beneficiary of the great strides which have occurred in numerical computations
ever since the advent of the digital electronic computer. Having easy access to computational
resources likeR, the author of statistical analyses is able to include into his report without much
effort and expense pictures of data and graphs of functions.They are indispensable devices
when writing a report for describing data and explaining theory. The graphical capabilities of
R are versatile; graphs are easy to make. The painstaking etching of limestone slabs which
required many hours of labor for lithographers to accomplish has been eliminated because graphs
and figures with the highest quality for immediate publication can be made by authors with
free statistical and mathematical typesetting computer programs. It is by virtue of the licensing
of R under the General Public License (GPL) which has made it possible to obtain this free
and reliable statistical computer program which enjoys active development from all corners of
the world. Here, we will learn, by beginning with constructing simple graphs, how to create
a complex graphical image like the one shown in Figure 1. Whenever a command is enclosed
in a rectangle, a situation which occurs very often in these notes, the command is meant to be
executed by the reader as if it belongs to a tutorial. The semi-colon is used to separate distinct
commands when it is deemed convenient to write the more than one command on the same line,
and the # symbol marks the beginning of a comment.

Washington, D.C.
February 2005
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Chapter 1

Graphs of Functions

1.1 Curves

A graph of a mathematical function may be created inR. A simple graph to make is the one of
the mathematical functionsin(x) :

curve(sin(x),-2*pi,2*pi)

It is plotted from−2π to 2π. To embellish the picture with a title, labeled axes, and colored lines
of various styles, options ofcurve are used.

curve(sin(x),-2*pi,2*pi,main="Sine and Cosine Curves", xlab="Time",
ylab="Amplitude",col="red",lty=5)
abline(h=0,col="blue",lty=2)

If xlab="" andylab="" , then the axes are not labeled, and ifxaxt="n" andyaxt="n" ,
then the axes are not printed. This was done in order to superimpose two graphs on each other.
In the next set of instructions, the cosine curve is superimposed on the sine curve by using
par(new=TRUE) . The command,abline with h=0 adds a straight horizontal line.

curve(sin(x),-2*pi,2*pi,main="Sine and Cosine Curves", xlab="Time",
ylab="Amplitude",col="red",lty=5)
par(new=TRUE)
curve(cos(x),-2*pi,2*pi,xlab="",ylab="",yaxt="n",xa xt="n",
col="green",lty=5)
abline(h=0,col="blue",lty=2)

The syntax ofcurve allows for the specification of the domain ofsin(x) . The color of
the horizontal line is specified bycol="blue" and the dotted style of the horizontal line is
specified bylty=2 .

A more complete description of the options for use incurve appears in?curve , ?plot ,
and in?par . The command,par , does not produce statistics or a graph. It sets the graphical

1



2 CHAPTER 1. GRAPHS OF FUNCTIONS

parameters. Graphical parameters may be specified within a plotting function as was done in
making a picture of the sine function withcurve . The other way of setting a graphical param-
eter is by means of the command,par . When a graphical parameter is set by means ofpar , it
is used henceforth for the duration of the current session ofR, unless it is superseded by another
use ofpar .

In the description ofpar , there is an option which specifies the seven styles of lines,lty :

Table 1.1: Styles of Lines

0 blank
1 solid
2 dashed
3 dotted
4 dot dash
5 long dash
6 two dash

The options,xlab andylab , allows for the arbitrary use of labels for the x and y axes.
The use ofxaxt="n" specifies that the x-axis must not be plotted. In the example of drawing
a picture of the cosine function,xlab="" andxaxt="n" cause no labelling of the x-axis and
no use of a marked scale. Another option which is worth considering is the optiontype="n" .
It suppresses the image of the graphs, so that, only the titleand axes are visible Sometimes such
a blank is useful on occasions of writing a examination in which the students are asked to plot
data on a prescribed template.

The first instance ofcurve will produce the title, labeling of the axis, and the image ofthe
first figure, while the second graph will be superimposed on the first. The superimposition does
not occur automatically. Every time a plotting function like plot , curve , andmatplot is
used,R erases any previous vestige of a plot and starts with a fresh plot. In order to superimpose
two images on the same plot, the commandpar(new=TRUE) must be inserted in between the
two plotting functions as was done above for superimposing acosine plot onto a sine plot.

Another and better way to superimpose two graphs is with the use of the option,add=T :
curve(sin(x),-2*pi,2*pi,main="Sine and Cosine Curves", xlab="Time",
ylab="Amplitude",col="red",lty=5)
curve(cos(x),-2*pi,2*pi,ylab="",yaxt="n",xaxt="n",
col="green",lty=5,add=TRUE)
abline(h=0,col="blue",lty=2)
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1.2 Surfaces

Engineers might like to make sine and cosine curves, but a statistician would be more interested
in drawing a response surface which he might use in a report orin a classroom. The response
surface which appears in Figure 1.2 and is derived from the linear model,yi = β0 + β1xi + ǫi
whereǫi ∼ N(0, σ2) was drawn by the following set of commands.
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sse<-function(beta0,beta1){
x1<- -1
y1<- -1
x2<-0
y2<-0
x3<-1
y3<-1
z<-(y1-beta0-beta1*x1) ̂2+(y2-beta0-beta1*x2) ̂2+(y3-beta0-beta1*x3) ̂2
return(z)
}
beta0<-seq(-1,1,length=50)
beta1<-seq(0,2,length=50)
z<-outer(beta0,beta1,sse)
par(cex.main=3,cex.lab=2,cex=1)
persp(beta0, beta1, z,d=1, theta = 30, phi = 0, expand = .8, co l = "lightgray",
xlab="beta0",ylab="beta1",zlab="SSE",main="Simple Re sponse Surface")
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The command which creates the surface is the commandpersp() . It has several interesting
options likeexpand and the ones for specifying the angles of perspective,theta andphi .
The response surface shows the case when the set of data consists of the three co-linear points,
(-1,-1) ,(0,0) , and(1,1) . The response surface shown in Figure 1.2 is the representation

of the function,SSE =
n∑

i=1

(yi − β0 − β1xi)
2. The values ofx andy of these co-linear points

are written in the body of the functionsse() as shown above. The variables of SSE areβ0 and
β1. As in the case of drawing a picture of the sine and cosine functions, numerical values of the
variables must first be created. To that end, creating thebeta0 andbeta1 coordinates uses
the command for creating sequences. By trial and error, the vectorsbeta0 andbeta1 which
span a two unit intervals using 50 sub-intervals were chosenbecause they produced a graph of
the response surface that looked good, wherea, the values for the coordinate,z , are stored in a
square matrix. It is understood that the horizontal aspect of the square matrix corresponds to the
x coordinate and the vertical aspect corresponds to they coordinate as if by analogy the square
matrix were a multiplication table. The command,outer(beta0,beta1,sse) , performs
the matrix multiplication of an × 1 vector by a1 × n vector to produce an × n matrix having
elements which produced by the evaluation of the function,sse(beta0,beta1) .

According to the manual page forplotmath which is given verbatim in Appendix I,
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“Expressions can also be used for titles, subtitles and x- and y-axis labels (but not
for axis labels onpersp plots).”

Consequently, Greek letters cannot be displayed in the axesof persp , even thought they can be
displayed in its title.

1.3 Annotation

Another curve which a statistician is inclined to include ina report is the graph of a normal
distribution like the one shown in Figure 1.3. It was produced by following the same logic which
ordered the commands that produced the picture of the sine curve.

−3 −2 −1 0 1 2 3

Student’s t Distributions

 

t10t2

Figure 1.4:

par(cex.main=1.15,cex.lab=1.25,cex=1.5)
curve(dnorm(x,mean=0,sd=1),-3,3,yaxt="n",xlab=" ", yl ab=" ",
main="Normal Distribution: N(0,1)")

A picture of Student’s t distribution can be similarly created, but unlike any Normal distribu-
tion which can be transformed to the standard N(0,1), there are as many t distributions as there
are degrees of freedom. In a picture of several superimposedt distributions, there would be a
need to annotate the picture appropriately to identify a curve with its degree of freedom.
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par(cex.main=1.15,cex.lab=1.25,cex=1.5)
curve(dt(x,10),-3,3,yaxt="n",ylab=" ",xlab="",lty=1,
main="Student’s t Distributions")
curve(dt(x,2),-3,3,yaxt="n",ylab=" ",lty=2,add=TRUE)
par(cex.main=1,cex.lab=1,cex=2)
t1.str<-expression(paste(t[10]))
text(1,dt(1,10),t1.str,adj=c(-.25,0))
t2.str<-expression(paste(t[2]))
text(-.75,dt(1,10),t2.str,adj=c(-.75,0))

In this example of annotating a graph as shown in Figure 1.4, atitle appears on the graph,
but there are different styles of lines and text has been placed at certain specified positions in
the graph. The curve with the solid line corresponds to the Student’s t distribution with ten
degrees of freedom. To placet10 near the solid line, thetext command is used in which the
first entry is the x coordinate of the position, and the secondentry is the y coordinate of the
position. In the above example,text(1,dt(1,10),t1.str,adj=c(0,0)) specifies that the text
which is contained in the object,t1.str , shall be placed at the coordinates(1,dt(1,10))
wheredt(1,10) is the ordinate of the Student’s t distribution with10 degrees of freedom at
x = 1. The option,adj=c(0,0) , specifies the way in which the text is justified relative to the
coordinates of the text. A schematic depiction of the effects of adj on the justification of the
text is shown in Figure 1.5 and described in Table 1.2. In Figure 1.5, the cross hairs mark the
location of the x and y coordinates of the text, and the locations of00 , 01 , 10 , and11 show the
effects of usingadj .
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0 0 North East
0 1 South East
1 0 North West
1 1 South West

Table 1.2: Justification of Text

1 Bottom
2 Left
3 Top
4 Right

Table 1.3: Position of Text

A similar option toadj for adjusting the justification of a text about its position is the option
to position the text strictly in the vertical or horizontal direction. It is denoted bypos , and the
effects of its options appear in Figure 1.6. This option willbe used in the next section.

1.4 Polygons

Another indispensable embellishment of a picture is the oneof shading the interior of a curve.
The shading is accomplished by means of polygons.

par(cex.main=1,cex.lab=1,cex=2)
stitle<-expression(paste("Meaning of the F Quantile, ",
F[nu[1]][","][nu[2]][";"][alpha]))
curve(df(x,df1=3,df2=5),0,5,yaxt="n",xlab=" ",ylab=" ",
xaxt="n",main=stitle)
axis(1,at=c(0), labels="0")
par(cex.main=1,cex.lab=1,cex=3)
axis(1,at=c(1.7), labels=expression(atop(" |",
F[nu[1]][","][nu[2]][";"][alpha])))
lines(cbind(1.7,1.7),cbind(0,df(1.7,df1=3,df2=5)),l ty=5)
x0<-seq(1.7,5,.4)
y0<-df(x0,df1=3,df2=5)
xx<-c(x0,rev(x0))
yy<-c(y0,matrix(0,1,length(x0)))
polygon(xx,yy,col="gray", border = "red")
text(2.25,.02,expression(alpha),adj=c(0,0))

The set of commands which were used to create Figure 1.7 contains several new commands:
expression , axis , paste , lines , rev , polygon , atop , and some Greek letters. The
one which will be discussed here will bepolygon .

By trial and error in making several plots of the F distribution, the under the curve for the
interval(1.7.5) , produced a pleasing graph. In that interval, the area underthe curve is sup-
posed to be shaded gray in order to emphasize the meaning of a quantile. To the end of using the
polygon command to do the shading, it is necessary to supply the x and ycoordinates. In the
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Figure 1.7: Figure 1.8:

example given above, the x and y coordinates for thepolygon command must be chosen in
such a way that the coordinates follow a path around the perimeter of the shaded area as depicted
in Figure 1.8. The first element ofxx and the first element ofyy are the coordinates of the point
labeled 1. The second element ofxx and the second element ofyy are the coordinates of point
2, and so on until a complete circuit about the shaded area hasbeen made.

The vectors,xx andyy , were constructed so as to follow the path around the shaded area. A
convenient command to manipulate a vector to reverse direction is the commandrev() . It will
reverse the order of the elements of a vector. By concatenating the elements ofx0 which run
from 1.7 to 5 by .4 units with a vector of elements which runs inreverse order from 5 to 1.7 by
.4, the following command was used:c(x0,rev(x0)) . The top part of the shaded area when
x0 runs from 1.5 to 5 is the ordinate of the curve which is produced by the F distribution, i.e.
df(x0,df1=3,df2=5) . The bottom side of the shaded area which corresponds tox0 from
5 to 1.7 has ordinate 0; therefore,yy was created by concatenatingdf(x0,df1=3,df2=5)
with a vector of all zeros. When the elements ofxx andyy are combined, they correspond to
the coordinates of the points which are depicted in Figure 1.8.

The set of commands which produced Figure 1.8 and which includes the commands written
in italics is shown below. The commands which are given in italics print the points and write the
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numbers which lie around the perimeter of the shaded area.

par(cex.main=1,cex.lab=1,cex=2)
stitle<-expression(paste("Meaning of the F Quantile, ",
F[nu[1]][","][nu[2]][";"][alpha]))
curve(df(x,df1=3,df2=5),0,5,yaxt="n",xlab=" ",ylab=" ",
ylim=c(-.2,.8),xaxt="n",main=stitle)
axis(1,at=c(0), labels="0")
par(cex.main=1,cex.lab=1,cex=3)
axis(1,at=c(1.7), labels=expression(atop(" ",F[nu[1]] [","][nu[2]][";"][alpha])))
x0<-seq(1.7,5,.4)
y0<-df(x0,df1=3,df2=5)
xx<-c(x0,rev(x0))
yy<-c(y0,matrix(0,1,length(x0)))
polygon(xx,yy,col="gray", border = "red")
par(cex.main=1,cex.lab=1,cex=1)
points(xx,yy,pch=20)
par(cex=.8)
for (i in 1:(length(xx)/2)){
text(xx[i],yy[i],i,pos=3)
}
for (i in ((length(xx)+2)/2):length(xx)){
text(xx[i],yy[i],i,pos=1)
}

The coordinates for use inpolygon must follow the right pattern. The vector,xx , was di-
vided into two pieces, in order to write numbers directly above a point as specified by the option
pos=3 and directly below a point bypos=1 according to the top and bottom of the shaded area.
Note thatadj=c(.5,.5) means dead center justification. The commandpar(cex=.8) ad-
justs the scaling of the written text, and the additional command,points(xx,yy,pch=20) ,
create the points with point symbol set to 20. An array of symbols with identification numbers
is given in Figure 1.9.

All of the different symbols which are available inR for use in making graphs are shown in
Figure 1.9, and the set of commands with produced Figure 1.9 is given below. The semi-colon
is used to separate distinct commands when it is deemed convenient to write the more than one
command on the same line.
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Figure 1.9:

ipch <- 1:25; dd <- c(-1,1)/2
rx <- dd+ range(ix <- (ipch-1) %/% 5)
ry <- dd+ range(iy <- 3 + 4-(ipch-1) %% 5)
plot(rx, ry, type="n", axes = F, xlab = "", ylab = "",xaxt="n" ,yaxt="n",

main = "Symbols for Points. Use pch = <number> ")
abline(v=ix, h=iy, col = "lightgray", lty = "dotted")
for(i in ipch) { # red symbols with a yellow interior (where av ailable)

points(ix[i], iy[i], pch=i, col="red", bg="red", cex = 4)
text (ix[i] - .3, iy[i], i, col="black", cex = 1.5)
}

1.5 Greek Letters and Formulas

A striking feature of Figure 1.7 besides the inclusion of a shaded area is the presence of Greek
letters and mathematical notation. The syntax for annotating a graph with mathematical formulae
is given in Appendix I. The syntax is not the syntax which is used in LATEX but it does bear a re-
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semblance. For example,F[nu[1]][","][nu[2]][";"][alpha] is the syntax for creat-
ingFν1,ν2;α which in LATEX is written in mathematics mode asF_{\nu_1,\nu_2;\alpha} .
Greek letters are spelled in English, and square brackets create subscripts. It is, however, nec-
essary to use the commandexpression() when including Greek letters and mathematical
symbols in a graph. The statement for creating the object,stitle , which contains the text of
the title is given below:

stitle<-expression(paste("Meaning of the F Quantile, ",

F[nu[1]][","][nu[2]][";"][alpha]))

In order to put the mathematical expression,Fν1,ν2;α, into the title, it must be pasted to the
English part of the title. An example of the syntax ofpaste() is paste(a,b) which will
produceab . In an object oriented programming language likeR, there are such things asobjects,
classes, methods where tasks are organized by functions, objects are organized by classes, and
functions and classes are brought together by methods. The class,expression, contains elements
which are expected to be unevaluated. By applying the command, expression() , to the
result ofpaste() , the English and mathematical formula is treated as an element of the class,
expression which in turn is used byplot() to annotate the graph with a combination of English
and mathematical notation in the title.

1.6 Legend and Identifying Points

In all of the examples discussed thus far, the plots have beenof mathematical functions for which
curve is used. Statisticians like to make pictures of data. By executing apropos("plot")

, the result will prove that there are many commands with which to make pictures of data inR.
Rather than make a graph of a mathematical function, the following examples will make plots
of data. Before making pictures of data, we will describe theconstruction of a legend and the
printing of a graph onto paper.

Incorporating a legend into the plot for identifying the twocurves seems appropriate, but
where should it be placed? Thelocator function will produce the coordinates at that place
on the plot where the cursor is placed and the left key of the mouse clicked. Two points will be
specified inlocator . One point will coincide with the upper left corner of the legend, and the
second point will coincide with the lower right corner of thelegend. By means of the cursor,
these two points will be used byR to place the legend of the right size in the right place.

legend(locator(n=2),legend=c("Summer","Winter"),col =c("red","green"),
lty="1")

.

To see whatlocator produces, execute locator(n=2) and click when the cursor is where
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the upper left and lower right corners of the legend should beplaced. Explicitly,locator
produces coordinates. The coordinates whichlocator furnishes are automatically utilized by
the legend command. Even though, it is convenient to incorporate locator directly in the
legend command, putting the actual coordinates whichlocator provides into the legend
manually makes it possible to reproduce the plot with the legend in exactly the same position.

legend(c(49.75750,75.37375),c(0.9460465,0.7325581),
legend=c("Sine","Cosine"),col=c("red","green"),lty= "1")

A written report includes graphics, and unless a graph can beprinted on paper it cannot be
used in a report. A graph which is created byR can be saved as was done in the preceding exam-
ple to a file in a Postscript format which is recognized by modern printers. The last command,
dev.off() , in the last set of instructions terminates the use of the graphics device and causes
the image to be sent to the file,/tmp/CPI.ps . Rather than create a Postscript file of the image,
the graph can be saved in a PNG format by using the command:
png(file="/tmp/CPI.png", bg="transparent", width=600, height=800)
in place of thepostscript command.

postscript(horizontal=F,file="/tmp/CPI.ps")
matplot(m,type="l",main="Sine and Cosine Curves",
col=c("red","green"),xlab="Time",ylab="Amplitude")
abline(h=0„col="blue",lty=2)
legend(c(49.75750,75.37375),c(0.9460465,0.7325581), legend=
c("Sine","Cosine"),col=c("red","green"),lty="1")
dev.off()

1.7 Plotting Data

One of the most popular forms of presenting data for a statistician is the histogram.
w<-c(83,85,74,70,92,64,72,87,88,75)
hist(w)

. There are various options inR for producing

histograms with different styles. A histogram which displays the relative frequency is produced
by: hist(w,prob=T) ; with absolute counts by: hist(w,prob=F) . The sizes of the
bins may be specified by means of thebreaks option as is done here:

br<-seq(40,100,5)
hist(w,breaks=br,prob=T,main="Exam Scores from Watchin g Videos",xlab="Scores")

It is often desired to superimpose a Normal distribution on ahistogram by using:
curve(dnorm(x,mean=mean(w),sd=sd(w)),add=T) .
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Figure 1.10:

1.8 Side-by-Side

Two graphs can be placed side-by-side by means of usingpar(mfrow=c(1,2)) . For exam-
ple,

w<-c(83,85,74,70,92,64,72,87,88,75)
br<-seq(40,100,5)
par(mfrow=c(1,2))
par(cex.lab=1.5, cex.main=1.5,cex=1.5)
hist(w,breaks=br,prob=T,main="Normal Fit", xlab="Scor es",col="red")
curve(dnorm(x,mean=mean(w),sd=sd(w)),add=T)
hist(w,breaks=br,prob=T,main="Binomial Fit", xlab="Sc ores",col="red")
curve(dbinom(round((x-40)/60*length(w)),
length(w),mean((w-40)/60))/6,40,100,add=T)

.

The key command for putting two plots side-by-side on the same page is the parameter state-
ment,par(mfrow=c(1,2)) . To put four plots on the same page,par(mfrow=c(2,2)) is
used. Similarly, to put three columns in two rows of plots on the same page,par(mfrow=c(2,3))
is used. To reset the frames so that only one plot appears on a page, use par(mfrow=c(1,1))

Suppose another set of data besideswwas obtained and is assigned to the object,x .
x<-c(95,81,59,68,74,79,72,70,81,58)

The set of data contained inw and the set of data contained inx were obtained in a process
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which makeswandx independent sets of data. The set of data inware scores from an examina-
tion in understanding French from students who attend classroom lectures whereasx contains
examination scores for proficiency in French from students who also listened to audio tapes of
French. We wish to see the data of both:

plot(w,x) Some points lie far away from the rest of the data. The commandidentify

will allow us to find which points in the data produced the points of interest in the plot.
identify(w,x) A more ambitious goal might be to place the names of the pointson the

plot as a result of identifying some of them as in the following example of identifying four points
and saving the resulting image to a Postscript file:

w<-c(83,85,74,70,92,64,72,87,88,75)
x<-c(95,81,59,68,74,79,72,70,81,58)
names<-c("A","B","C","D","E","F","G","H","I","J")
par(cex.lab=1.5, cex.main=1.5,cex=1.5)
plot(w,x,main="Scores from Lectures Alone versus Lecture s and Audio Tapes",
xlab="Only Lectures", ylab="Both Lectures and Audio Tapes ")
identify(w,n=4,x,labels=names,plot=T)
dev.print( postscript, horizontal=FALSE, file="fig8.ps " )

After the points have been identified by means of using the cursor, the plot will be saved to
fig8.ps .

1.9 Box Plots

A single box plot is simple to make. Supposew<-c(83,85,74,70,92,64,72,87,88,75) ,
then a box plot of this data can be made by:boxplot(w) .

A useful aspect of boxplots can been seen when a series of box plots are put side-by-side in
the same plot. This arrangement of box plots offers a quick view of the relationship of the sets
of data with each other. The following set of commands will create four box plots of the scores
in French depending on classroom instruction only given inw, the use of only video tapes given
in w, the use of only audio tapes given iny , and the use of only a textbook given inz .

w <-c(83,85,74,70,92,64,72,87,88,75)
x <-c(95,81,59,68,74,79,72,70,81,58)
y <-c(86,71,49,63,65,72,78,68,85,65)
z <-c(87,61,45,81,72,67,66,51,55,58)
p<-list(w,x,y,z)
boxplot(p,main="Box Plots of French Scores",
ylab="Scores",xlab="",xaxt="n",horizontal=FALSE)
axis(1,at=c(1,2,3,4), labels=c("classroom","video"," audio","text"))

The use of thelist allows the simultaneous plotting of the four box plots in onepicture,
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and the use ofaxis puts nice labels on the x-axis at positions 1, 2, 3, and 4, respectively.

1.10 Confidence Intervals

One of the most important concepts in statistics is the confidence interval. For a small enough
population, it might be feasible to obtain all the desired information about it, like the mean and
the variance. Almost always, there is limited time, and there are insufficient financial resources
to examine the entire population. Instead, a sample of the population is usually drawn which, if
it is done properly, will represent the population in which case the mean of the sample will be
close to the mean of the population, and the variance of the sample will be close to the variance
of the population. The statistics which are derived from a sample cannot except in extremely
rare events be exactly the same as the corresponding statistics of the population. A good sample,
nonetheless, does contain accurate information about the population.

By means of confidence intervals, it is possible to infer somecharacteristics of the population
based on the set of experimental data which was obtained froma sampling of the population. The
length of the confidence interval will indicate the precision of the data, and its location will indi-
cate the likely region which contains the parameter of interest of the population. The importance
of the confidence interval lies in its use to substantiate an inference about the population.
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If a very large number of 95 percent confidence intervals are plotted, then, on the average,
95 percent of them will cover the true population mean. We will useR to produce a picture of
twenty 95 percent confidence intervals to illustrate the meaning of confidence intervals.
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The example begins by defining a function,ci . Every command after{ and before} be-
longs to the function. A function inR is akin to a sub-routine in FORTRAN or to a module in
SAS/IML. A vector of30*n random numbers is generated from a standard Normal distribution.
The vector,y , is converted into a matrix consisting of 30 rows of n columns. The lower limit of
the 95% confidence interval is

ȳ − tn−1, α

2

s√
n

which will be translated in theR language as:
mean(y)-qt(.975,length(y)-1)*sqrt(var(y)/length(y))
The upper limit is the same except that a+ symbol is used instead of the minus sign.
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ci<-function(n=20){
y<-matrix(rnorm(30*n,0,1),nrow=30)
lower<-apply(y,2,function(y)(mean(y)-qt(.975,
length(y)-1)*sqrt(var(y)/length(y))))
upper<-apply(y,2,function(y)(mean(y)+qt(.975,
length(y)-1)*sqrt(var(y)/length(y))))
matplot(cbind(lower,upper),type="n",main=
"Twenty 95 percent Confidence Intervals",ylab="Length")
z1<-cbind(1:n,1:n)
z2<-cbind(lower,upper)
matlines(t(z1),t(z2),lty="solid")
abline(h=0)
}
ci()

The last command,ci() , will execute the function which will produce the 20 confidence
intervals.

The trick whichR provides is given by the commandapply . It means that a function is to be
applied to each record of a column. That is,apply(y,2,function(y){...}) will apply
the function to every column ofy . The command,apply(y,1,function(y){...}) , will
cause the function to be applied to every row ofy . apply is a peculiar though very handy
command whichR inherited from S. There is no corresponding command in FORTRAN or in
SAS/IML, like apply .

The procedure usesmatplot to plot the end points of the twenty confidence intervals on the
plot. Two vectors,z1 andz2 , are created which contain the end points of the twenty confidence
intervals, but the end points are made invisible by the option, type="n" . The x coordinates
of the lower and upper limits are contained inz1 and the y coordinates for the lower and up-
per limits are contained inz2 . The lower and upper limits are connected with a solid line by
means ofmatlines . The true population mean is denoted by the horizontal line created by
abline(h=0) . That 18 out of 20 confidence intervals appear to cover the population mean
substantiates the theory that, on the average, 95% of the confidence intervals will contain the
population mean.
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Data Frames and Levels

A data frame is a collection of variables which have the same length. Its structure is like an array
in which the elements of a column correspond to the elements of a variable. Some permissible
manipulations of a data frame are like those of an array or matrix, but they cannot be fully
extended to matrix algebra. In order to apply the operationsof matrix algebra on data frames, a
data frame must be converted to a matrix. The namedd will be given to the object which will
be the data frame of the following examples. The data frame can be initialized by the command:

>dd<-data.frame() anddd will consist of the five variables:

>year<-c(1992,1993,1994,1995,1996,1997,1998,1999)
>ford<-c(38.38,52,58.75,26.88,34.38,23.02,45.81,63. 94)
>yen<-c(133.2,121,103.2,89.4,106.3,124.1,132.1,120. 4)
>eu<-c(1.64,1.61,1.67,1.38,1.48,1.68,1.85,.93)
>poors<-c(407.36,450.16,463.81,493.15,647.07,757.12 ,1101.75,1286.37)
>dd<-data.frame(year,ford,yen,eu,poors)
>names(dd)<-c("Year","Ford","Yen","EU","SP")

To assemble these five variables into the data frame, the following command is executed:
>dd<-data.frame(year,ford,yen,eu,poors) . The resulting structure ofdd can be dis-

played by >str(dd) . The commandstr() is like theproc contents procedure of
SAS.

The first order of business in analyzing a set of data is to makea picture of the data. Let
us examine the price of Ford common stock per share as a function of the exchange rate for
Japanese Yen, Euro, and the Standard and Poors (S&P), index as of the beginning of the year.
According to theory, the higher the exchange rate of yen per dollar or euro per dollar rises, the
more affordable Ford automobiles become relative to Japanese and German imported cars and
therefore the greater the demand for Ford common stock. If the theory is correct, there should
appear discernible patterns between the variables and the price of Ford stock. >plot(dd)

19
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No simple functional relationship is apparent between the price of Ford stock and the other
variables of interest upon inspecting the plot of the data. As a result, a statistical analysis of the
data will probably produce no useful information.
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2.1 Factors and Levels

There is a structure inR which is associated with a class called factor. A factor is a special type of
vector which is designed to contain non-numeric data known as categorical data. The elements
of a factor are strings and they are assigned to a level. The following example illustrates the
creation of a factor based on a set of data which was obtained from a survey of 51 people. They
were asked to rate their satisfaction with their jobs according to seven categories:don’t know ,
very dissatisfied , dissatisfied , so so , satisfied , andvery satisfied .
Some one who did not respond was give a NA for an answer. Noticethat in the vectorjob ,
there are nine occurrences of the response:so so . The vector was created by thefactor()
command. Its basic syntax is:factor(c(...), levels=c(...)) . The entries of the
data and the names of the levels must agree.

job<-factor(c("so so","satisfied","very satisfied","s atisfied",
"very satisfied","very satisfied","so so","very satisfi ed","NA",
"so so","satisfied","satisfied","so so","so so","satis fied",
"satisfied","so so","very satisfied","very satisfied", "satisfied",
"don’t know","so so","very dissatisfied","NA","very sat isfied",
"very satisfied","so so","very satisfied","very satisfi ed",
"very dissatisfied","satisfied","satisfied","so so"," very satisfied",
"NA","satisfied","satisfied","satisfied","very satis fied","satisfied",
"dissatisfied","very satisfied","satisfied","dissati sfied",
"satisfied","NA","very satisfied","satisfied","satis fied",
"satisfied","satisfied"),
levels=c("NA","don’t know","very dissatisfied","dissa tisfied",
"so so","satisfied","very satisfied"))

edu<-factor(c("high school","high school","masters"," college",
"college","masters","masters","college","high school ","high school",
"PhD","masters","college","high school","college","h igh school",
"PhD","college","high school","masters","PhD","maste rs","masters",
"PhD","PhD","college","masters","college","college" ,"masters",
"masters","masters","masters","masters","high school ","college",
"masters","masters","masters","masters","grade schoo l","PhD",
"masters","high school","college","college","masters ","PhD",
"college","college","masters"),levels<-c("other","P hD",
"masters","college","high school","grade school"))

par(cex.main=2,cex.lab=2,cex=1)
plot(edu,job,main="Job Satisfaction versus Education",
col=c("red","blue","yellow","green","brown","pink", "cyan"))

Likewise, the vector,edu , was created by the command,factor . Both vectors,job and
edu , have the same length. The advantage of creating these vectors of categorical data is evident
in the graph ofedu versusjob . Within each column for a level of education, there are colored
regions having relative areas corresponding to the frequency of each level. The colors are stip-
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ulated in theplot() command. The plotting routine will cycle through the list ofspecified
colors with each occurrence of a level as illustrated in Figure 2.1.
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Figure 2.1:
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Least Squares and Data Frames

w<-c(83,85,74,70,92,64,72,87,88,75)
x<-c(95,81,59,68,74,79,72,70,81,58)
y<-c(86,71,49,63,65,72,78,68,85,65)
z<-c(87,61,45,81,72,67,66,51,55,58)

To assemble these four variables into the data frame, the following command is executed:
dd<-data.frame(w,x,y,z) .

To illustrate the use oflm in making pictures which may be appropriate in the study of
linear model, the next example will focus on the problem of fitting a linear modelclassroom =
β0 + β1video+ β2audio+ β3text+ ǫ whereǫ ∼ N(0, σ2) to the data contained indd . Suppose
that the set of data already exists in the data frame,dd , so thatlm() may immediately be
applied to it. lm(dd) Under the heading ofCoefficients , the estimatesβ0 = 64.39754,
β1 = 0.50043, β2 = −0.05749, andβ3 = −0.28372 appear. The same results are produced in
the following equivalent formulation. lm(w ∼x+y+z) .

The syntax which represents the model has the form:w∼x+y+z . All the necessary infor-
mation for performing an analysis of variance is contained in the output of thelm and can be
passed to a subsequent procedure likeanova() : anova(lm(w ∼x+y+z)) . Rather than type
the command,lm(w ∼x+y+z) , many times over again, thelm procedure can be assigned to an
object such as: w.lm<-lm(w ∼x+y+z) While expressed as an object, the output of thelm pro-

cedure can be easily analyzed by means of applying various utilities to it, like: anova(w.lm)

. In the case of fitted(w.lm) , this procedure produces the fitted values of the linear model

while theresid procedure will produce the residuals of the linear model:resid(w.lm)

. These two procedures make it easy to produce the very important diagnostic plot of residuals
versus predicted values to help determine whether or not themodel is a good model.

23
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plot(fitted(w.lm),resid(w.lm),main="Residuals versus Predicted Values",
xlab="Predicted Values", ylab="Residuals")
abline(h=0)

To make a picture of the data is one of the very first steps in theanalysis of data. In
this example, the line which best fits the data is drawn and it is annotated with its equation.

x<-c(95,81,59,68,74,79,72,70,81,58)
y<-c(86,71,49,63,65,72,78,68,85,65)
plot(x,y,main="Semester Course Grade vs Quiz Grade",
xlab=’Quiz Average’,ylab=’Semester Score’)
par(lty=1)
coef<-lsfit(x,y) $coef
abline(coef=coef,lty=2)
B.str<-paste("y=",round(coef[1],2),"+",round(coef[2 ],2),"x")
text(median(x),coef[1]+coef[2]*median(x) - 1,B.str,po s=4)
boty<-y[order(y)][1:2]
topy<-y[order(-y)][1:2]
botx<-x[order(y)][1:2]
topx<-x[order(-y)][1:2]
for (j in 1:5){
points(botx[j],boty[j],col=2,pch=20)
points(topx[j],topy[j],col=4,pch=20)
}

Instead of using the combination:
coef<-lsfit(x,y) $coef

abline(coef=coef,lty=2)

the simpler command can used instead:
abline(lsfit(x,y),lty=2)

3.1 Logistic Regression

As soon as a random variable is defined in the context of a phenomenon, an associated prob-
ability distribution is immediately induced. Some probability distributions occur so often that
they are given names. If a random variable has only two possible values which correspond to
two and only two outcomes then it is called a Bernoulli randomvariable, and it is denoted by
X ∼ b(1, p) where 1 stands for one trial and p is the probability of success that the event will
occur. A Bernoulli random variable is characterized by having one trial with two possible out-
comes: success-failure, on-off, 0-1, accept-reject, man-woman, etc.. Sometimes the Bernoulli
random variable is referred to as being dichotomous.

Usually, when formulating a model particularly in the social and biological sciences, the sex
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of a person or the sex of an animal is used to help explain on outcome. For example, the vari-
ables sex, age, years of education, religion, occupation, and the number of dependent children
might be used to predict a person’s annual income. On the other hand, it is conceivable that age,
education, religion, number of dependent children, occupation, and personal income could be
used to predict a person’s sex. Similarly, temperature, moisture of soil, and pH might be used
to predict whether a seed will germinate or die. Or a credit card company might use age, sex,
personal income, and personal debt to determine if an applicant for a credit card is a good or bad
credit risk,

In these last examples, the response variable is a Bernoullirandom variable because there are
only two possible outcomes. Because the response can only assume two possible values, such a
model cannot be analyzed in the same manner as a regular linear model.

Consider the example of using a person’s examination score to predict whether he will pass
or fail a course. From a previous class, the following table of scores and outcomes were observed.

Table 3.1: Examination Scores and Pass-Fail in a Course

Score Pass=1, Fail=0

1 0

2 0

3 0

4 0

5 0

6 0

5 1

6 1

7 1

8 1

9 1

10 1

A plot of the data appears in Figure 3.1. It shows two levels: one at 0 and another at 1.

An analyst would like to predict the probability of a studentpassing the course based on
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Figure 3.1

his exam score. In order to accommodate the analyst’s goal, the method of logistic regression is
available. Unlike the method of least squares from which easily derived and compact formulas
exist, the method of logistic regression uses least squaresindirectly in a rather obscure procedure
which can only be processed by means of a computer. There are no equations with which some
one can use to produce a fitted logistic curve to the data by hand. As a result, the discussion of
logistic regression tends to be either heuristic or highly technical.

A smooth function which approximates a step function lies atthe basis of logistic regression.
In the picture of the data taken from Table 3.1 and shown in Figure 3.1, two distinct levels exist:
one at y=0 and the other at y=1. The logistic function approximates a smooth connection of the
two levels as shown in Figure 3.2 where the logistic functionis shown superimposed on the plot
of the data.

The equation of the logistic function has the form:f(x) = ex

1+ex
. In logistic regression, the

probability denoted by p that a trial will lead to a success isassumed to follow the logistic
function. In the most simple case, it is assumed that

p =
eα0+α1x

1 + eα0+α1x

This equation can be rearranged through a series of algebraic steps into:log( p
1−p

) = α0 + α1x.
The right hand side of the equation bears a resemblance to a linear model in two parameters,
hence, the association of logistic with regression. Given the data consisting of 1’s for success
and 0’s for failure and their respective values for x, a computer statistics package will compute
α̂0 andα̂1 from a complex algorithm.
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Figure 3.2:

library("brlr")
x<-c(1, 2, 3, 4, 5, 6, 5, 6, 7, 8, 9,10,11)
y<-c(0,0,0,0,0,0,1,1,1,1,1,1,1)
coef<-brlr(y x,br=FALSE)$coef
par(cex.lab=2, cex.main=2,cex=1.25,cex.axis=1.8)
plot(x,y,xlab="Test Scores", ylab="Pass-Fail",
main="Fitted Logistic Function")
curve(exp(coef[1]+coef[2]*x)/(1+exp(coef[1]+coef[2] *x)),1,10,add=TRUE)

The results of having applied a statistical computer package to the set of data shown in
Table 3.1 show that the logistic function which best fits the graph of the data is the one with
α̂0 = −8.75 andα̂1 = 1.59. The graph of this particular logistic function appears in Figure 3.2.

Suppose a new student received a score of 5 on the examination, then the probability that he
will pass the course is:

p̂ =
ecα0+cα1x

1 + ecα0+cα1x

p̂ =
e−8.75+1.59(5)

1 + e−8.75+1.59(5)

p̂ = .31

The probability that the student will pass the course with a score of 5 on the examination is
.31.
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The ratio p
1−p

is called the odds. For example, if the probability that a horse will win a race

is 10/11 then the odds are:10/11
1/11

= 10
1

= 10 : 1 that it will win. Or conversely, if the odds are 5:4

that a horse will win, the probability is:p = o
1+o

= 5/4
9/4

= 5/9. Theodds ratio is defined to be:

ψ =

p1

1 − p1
p0

1 − p0

= eα1

andlog(ψ) = α1 is called thelog ratio. For example, if x=1,thenp1 = eα0+α1

1+eα0+α1
and if x=0, then

p0 = eα0

1+eα0
. From the previous example,α0 = −8.75 andα1 = 1.59 so thatψ = e1.59 = 4.9. The

odds ratio isodds of passing
odds of failing

= 4.9
1

. The interpretation that would be given is that for an increase
in grade by one unit the odds of passing increases by a factor of 4.9.
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acpclust.R

### Code by Eric Lecoutre, Universite catholique de Louvain , Belgium
### Winner of the R Homepage graphics competition 2004

### Works in R 1.8.1 ...

require(ade4)
require(mva)
require(RColorBrewer)
require(pixmap)

# -------------------------------------------------- ------------------------------------------

postscript(horizontal=FALSE, file="acpclust.ps")
ltitle=function(x,backcolor="#e8c9c1",forecolor="da rkred",cex=2,ypos=0.4){

plot(x=c(-1,1),y=c(0,1),xlim=c(0,1),ylim=c(0,1),typ e="n",axes=FALSE)
polygon(x=c(-2,-2,2,2),y=c(-2,2,2,-2),col=backcolor ,border=NA)
text(x=0,y=ypos,pos=4,cex=cex,labels=x,col=forecolo r)

}

# plotacpclust(USArrests)

plotacpclust = function(data,xax=1,yax=2,hcut,cor=TRU E,clustermethod="ave",
colbacktitle="#e8c9c1",wcos=3,Rpowered=FALSE,...){
# data: data.frame to analyze
# xax, yax: Factors to select for graphs

# Parameters for hclust
# hcut

29
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# clustermethod

require(ade4)

pcr=princomp(data,cor=cor)

datac=t((t(data)-pcr$center )/pcr$scale)

hc=hclust(dist(data),method=clustermethod)
if (missing(hcut)) hcut=quantile(hc$height,c(0.97))

def.par <- par(no.readonly = TRUE)
on.exit(par(def.par))

mylayout=layout(matrix(c(1,2,3,4,5,1,2,3,4,6,7,7,7, 8,9,7,7,7,10,11),ncol=4),
widths=c(4/18,2/18,6/18,6/18),heights=c(lcm(1),3/6, 1/6,lcm(1),1/3))

par(mar = c(0.1, 0.1, 0.1, 0.1))
par(oma = rep(1,4))

ltitle(paste("PCA ",dim(unclass(pcr$loadings))[2], "v ars"),cex=1.6,ypos=0.7)
text(x=0,y=0.2,pos=4,cex=1,labels=deparse(pcr$call) ,col="black")
pcl=unclass(pcr$loadings)
pclperc=100*(pcr$sdev)/sum(pcr$sdev)
s.corcircle(pcl[,c(xax,yax)],1,2,sub=paste("(",xax, "-",yax,") ",
round(sum(pclperc[c(xax,yax)]),0),"%",sep=""),possu b="bottomright",
csub=3,clabel=2)
wsel=c(xax,yax)
scatterutil.eigen(pcr$sdev,wsel=wsel,sub="")

dend=hc
dend$labels=rep("",length(dend$labels))
dend=as.dendrogram(dend)

ngrp=length(cut(dend,hcut)$lower)

ltitle(paste("Clustering ",ngrp, "groups"),cex=1.6,yp os=0.4)

par(mar = c(3, 0.3, 1, 0.5))

# Dendrogram
attr(dend,"edgetext") = round(max(hc$height),1)
plot(dend, edgePar = list(lty=1, col=c("black","darkgre y")),
edge.root=FALSE,horiz=TRUE,axes=TRUE)

abline(v=hcut,col="red")
text(x=hcut,y=length(hc$height),labels=as.character (round(hcut,1)),
col="red",pos=4)
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colorsnames= brewer.pal(ngrp,"Dark2")
groupes=cutree(hc,h=hcut)
ttab=table(groupes)

# Groups
par(mar = c(0.3, 0.3, 1.6, 0.3))
#names.arg=paste("g",ngrp:1,sep="")
mp=barplot(as.vector(rev(ttab)),horiz=TRUE,space=0, col=rev(colorsnames),
xlim=c(0,max(ttab)+10),axes=FALSE,main="Groups",axi snames=FALSE)
text(rev(ttab),mp,as.character(rev(ttab)),col=rev(c olorsnames),cex=1.2,pos=4)

# Main ACP scatterplot

par(mar = c(0.1,0.1, 0.1,0.1))
selscores=pcr$scores[,c(xax,yax)]

zi=apply(datac,1,FUN=function(vec)return(sum(vec^2) ))
cosinus= cbind(selscores[,1]^2 / zi,selscores[,2]^2 / zi )
cosinus= cbind(cosinus,apply(cosinus,1,sum))
ww= (cosinus[,wcos])*4 +0.5

# Outliers? Test with median+1.5*IQ

# Factor #1
out <- selscores[,1] < median(selscores[,1]) -
1.5 * diff(quantile(selscores[,1],c(0.25,0.75)))
out = out | selscores[,1] > median(selscores[,1]) +
1.5 * diff(quantile(selscores[,1],c(0.25,0.75)))
# factor #2
out = out | selscores[,2] < median(selscores[,2]) -
1.5 * diff(quantile(selscores[,2],c(0.25,0.75)))
out = out | selscores[,2] > median(selscores[,2]) +
1.5 * diff(quantile(selscores[,2],c(0.25,0.75)))

plot(selscores,axes=FALSE,main="",xlab="",ylab="",t ype="n")
abline(h=0,col="black")
abline(v=0,col="black")

points(selscores[!out,1:2],col=(colorsnames[groupes ])[!out],cex=ww,pch=16)
text(x=selscores[out,1],y=selscores[out,2],
labels=dimnames(selscores)[[1]][out],col=(colorsnam es[groupes])[out])
box()

# Factor 1
par(mar = c(0.1, 0.1, 0.1, 0.1))
ltitle(paste("Factor ",xax, " [",round(pclperc[xax],0) ,"%]",sep="" ),
cex=1.6,ypos=0.4)
plotdens(pcr$scores[,c(xax)])
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# Factor 2
par(mar = c(0.1, 0.1, 0.1, 0.1))
ltitle(paste("Factor ",yax," [",round(pclperc[yax],0) ,"%]",sep=""),
cex=1.6,ypos=0.4)
plotdens(pcr$scores[,c(yax)])

# R logo
#plot(0,0,type="n",xlim=c(0,100),ylim=c(0,15),axes= FALSE)
#if (Rpowered){
# logo <- read.pnm(system.file("pictures/logo.ppm", pac kage="pixmap")[1])
# addlogo(logo, px=c(100- (101/77)*11,100), py=c(0, 11), asp=1)
#}
#text(x=100-15,y=c(2,5),pos=2,labels=c("Powered by R < www.r-project.org>",date()))

#box()

}

confshade2 = function(y, xlo, xhi, col = 8.)
{
n <- length(y)
for(i in 1.:(n - 1.)) {
polygon(c(xlo[i], xlo[i + 1.], xhi[i + 1.], xhi[i]), c(y[i] , y[
i + 1.], y[i + 1.], y[i]), col = col, border = FALSE)
}
}

confshade=function(x, ylo, yhi, col = 8.)
{
n <- length(x)
for(i in 1.:(n - 1.)) {
polygon(c(x[i], x[i + 1.], x[i + 1.], x[i]), c(ylo[i], ylo[i + 1.],
yhi[i + 1.], yhi[i]), col = col, border = FALSE)
}
}

plotdens=function(X, npts = 200, range = 1.5, xlab = "",
ylab = "", main = "", ...)
{
dens <- density(X, n = npts)
qu <- quantile(X, c(0., 0.25, 0.5, 0.75, 1.))
x <- dens$x
y <- dens$y
fqux <- x[abs(x - qu[2.]) == min(abs(x - qu[2.]))]
fquy <- y[x == fqux]
fquX <- as.numeric(qu[2.])
tqux <- x[abs(x - qu[4.]) == min(abs(x - qu[4.]))]
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tquy <- y[x == tqux]
tquX <- as.numeric(qu[4.])
medx <- x[abs(x - qu[3.]) == min(abs(x - qu[3.]))]
medy <- y[x == medx]
# Prepare les donnees a dessiner
#
medX <- as.numeric(qu[3.])
dx <- dens$x

dy <- dens$y
dx2 <- c(dx[dx <= fquX], fquX, dx[(dx > fquX) & (dx <= medX)], m edX,
dx[ (dx > medX) & (dx <= tquX)], tquX, dx[dx > tquX])

dy2 <- c(dy[dx <= fquX], fquy, dy[(dx > fquX) & (dx <= medX)],
medy, dy[(dx > medX) & (dx <= tquX)], tquy, dy[dx > tquX])
IQX <- dx2[(dx2 >= fquX) & (dx2 <= tquX)]
#
#
# Initialise le graphique
#
# axes(axes = F, xlim = c(min(dx2), max(dx2)), ylim = c(min(d y2), max(d
#
# Dessine la densite
IQy <- dy2[(dx2 >= fquX) & (dx2 <= tquX)]
# Trace densit sous IQ
#
plot(0., 0., xlim = c(min(dx2), max(dx2)), ylim = c(min(dy2 ), max(dy2)),
axes = F, xlab = xlab, ylab = ylab, main = main,type="n", ...)
# Ajoute mediane
#
#
confshade(IQX, rep(0., length(IQX)), IQy, col = "#bdfcc9" )
bdw <- (tquX - fquX)/20.
x1 <- c(medX - bdw/2., medX - bdw/2.)
x2 <- c(medX + bdw/2., medX + bdw/2.)
y1 <- c(0., medy)
# Ajoute lignes wiskers
#
#
polygon(c(x1, rev(x2)), c(y1, rev(y1)), col = 0.)
lines(x = c(fquX, fquX), y = c(0., fquy))
# Ajoute wiskers
#
#
lines(x = c(tquX, tquX), y = c(0., tquy))
meany <- mean(dy2)
IQrange <- tquX - fquX
lines(x = c(medX - range * IQrange, fquX), y = c(meany, meany) )
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lines(x = c(tquX, medX + range * IQrange), y = c(meany, meany) )
lines(x = c(medX - range * IQrange, medX - range * IQrange), y = c(meany -
(max(dy2) - min(dy2))/8., meany + (max(dy2) - min(dy2))/8. ))
#
# Ajoute outliers
#
#
lines(x = c(medX + range * IQrange, medX + range * IQrange), y = c(meany -
(max(dy2) - min(dy2))/8., meany + (max(dy2) - min(dy2))/8. ))
out <- c(X[X < medX - range * IQrange], X[X > medX + range * IQran ge])
#
# Ajoute les points...
#
# Ajoute l’axe
points(out, rep(meany, length(out)), pch = 5., col = 2.)
# Ajoute l’axe
#
#
points(dx2, dy2, pch = ".", type = "l")
#return(x = dessinx2, y = dessiny2)
axis(1., at = round(c(min(x), fquX, medX, tquX, max(x)), 2. ), labels = F,
pos = 0.)
invisible(list(x = dx2, y = dy2))
}

BoxDens=function(data, npts = 200., x = c(0., 100.), y = c(0. , 50.),
orientation = "paysage",
add = TRUE, col = 11., border=FALSE,colline = 1., Fill = TRUE)
{

dens <- density(data, n = npts)
dx <- dens$x
dy <- dens$y
if(add == FALSE)
plot(0., 0., axes = F, main = "", xlim = x, ylim = y, xlab = "",
ylab = "")
if(orientation == "paysage") {
dx2 <- (dx - min(dx))/(max(dx) - min(dx)) * (x[2.] - x[1.]) * 0 .98 +
x[1.]
dy2 <- (dy - min(dy))/(max(dy) - min(dy)) * (y[2.] - y[1.]) * 0 .98 +
y[1.]
seqbelow <- rep(y[1.], length(dx))
if(Fill == T)
confshade(dx2, seqbelow, dy2, col = col)
if (border==TRUE) points(dx2, dy2, type = "l", col = colline )
}
else {
dy2 <- (dx - min(dx))/(max(dx) - min(dx)) * (y[2.] - y[1.]) * 0 .98 +
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y[1.]
dx2 <- (dy - min(dy))/(max(dy) - min(dy)) * (x[2.] - x[1.]) * 0 .98 +
x[1.]
seqleft <- rep(x[1.], length(dy))
if(Fill == T)
confshade2(dy2, seqleft, dx2, col = col)
if (border==TRUE) points(dx2, dy2, type = "l", col = colline )
}
polygon(x = c(x[1.], x[2.], x[2.], x[1.]), y = c(y[2.], y[2. ], y[1.],
y[1.]), density = 0.)
}
data(swiss)
# png(file="swiss.png", width=600,height=400)
plotacpclust(swiss[,1:5], 1, 3, hcut=48)

dev.off()
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Chapter 5

Appendix 1

plotmath Mathematical Annotation in R

Description

If the text argument to one of the text-drawing functions (text , mtext , axis ) in R is an expression, the
argument is interpreted as a mathematical expression and the output will be formatted according to TeX-like
rules. Expressions can also be used for titles, subtitles and x- and y-axis labels (but not for axis labels onpersp
plots).

Details

A mathematical expression must obey the normal rules of syntax for anyR expression, but it is interpreted
according to very different rules than for normalR expressions.

It is possible to produce many different mathematical symbols, generate sub- or superscripts, produce fractions,
etc.

The output fromdemo(plotmath) includes several tables which show the available features.In these tables,
the columns of grey text show sampleR expressions, and the columns of black text show the resulting output.

The available features are also described in the tables below:

Syntax Meaning
x + y x plus y
x - y x minus y
x*y juxtapose x and y
x/y x forwardslash y
x %+-% y x plus or minus y
x %/% y x divided by y
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x %*% y x times y
x[i] x subscript i
x^2 x superscript 2
paste(x, y, z) juxtapose x, y, and z
sqrt(x) square root of x
sqrt(x, y) yth root of x
x == y x equals y
x != y x is not equal to y
x < y x is less than y
x <= y x is less than or equal to y
x > y x is greater than y
x >= y x is greater than or equal to y
x %~~% y x is approximately equal to y
x %=~% y x and y are congruent
x %==% y x is defined as y
x %prop% y x is proportional to y
plain(x) draw x in normal font
bold(x) draw x in bold font
italic(x) draw x in italic font
bolditalic(x) draw x in bolditalic font
list(x, y, z) comma-separated list
... ellipsis (height varies)
cdots ellipsis (vertically centred)
ldots ellipsis (at baseline)
x %subset% y x is a proper subset of y
x %subseteq% y x is a subset of y
x %notsubset% y x is not a subset of y
x %supset% y x is a proper superset of y
x %supseteq% y x is a superset of y
x %in% y x is an element of y
x %notin% y x is not an element of y
hat(x) x with a circumflex
tilde(x) x with a tilde
dot(x) x with a dot
ring(x) x with a ring
bar(xy) xy with bar
widehat(xy) xy with a wide circumflex
widetilde(xy) xy with a wide tilde
x %<->% y x double-arrow y
x %->% y x right-arrow y
x %<-% y x left-arrow y
x %up% y x up-arrow y
x %down% y x down-arrow y
x %<=>% y x is equivalent to y
x %=>% y x implies y
x %<=% y y implies x
x %dblup% y x double-up-arrow y
x %dbldown% y x double-down-arrow y
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alpha – omega Greek symbols
Alpha – Omega uppercase Greek symbols
infinity infinity symbol
partialdiff partial differential symbol
32*degree 32 degrees
60*minute 60 minutes of angle
30*second 30 seconds of angle
displaystyle(x) draw x in normal size (extra spacing)
textstyle(x) draw x in normal size
scriptstyle(x) draw x in small size
scriptscriptstyle(x) draw x in very small size
x ~~ y put extra space between x and y
x + phantom(0) + y leave gap for "0", but don’t draw it
x + over(1, phantom(0)) leave vertical gap for "0" (don’t draw)
frac(x, y) x over y
over(x, y) x over y
atop(x, y) x over y (no horizontal bar)
sum(x[i], i==1, n) sum x[i] for i equals 1 to n
prod(plain(P)(X==x), x) product of P(X=x) for all values of x
integral(f(x)*dx, a, b) definite integral of f(x) wrt x
union(A[i], i==1, n) union of A[i] for i equals 1 to n
intersect(A[i], i==1, n) intersection of A[i]
lim(f(x), x %->% 0) limit of f(x) as x tends to 0
min(g(x), x > 0) minimum of g(x) for x greater than 0
inf(S) infimum of S
sup(S) supremum of S
x^y + z normal operator precedence
x^(y + z) visible grouping of operands
x^{y + z} invisible grouping of operands
group("(",list(a, b),"]") specify left and right delimiters
bgroup("(",atop(x,y),")") use scalable delimiters
group(lceil, x, rceil) special delimiters

References

Murrell, P. and Ihaka, R. (2000) An approach to providing mathematical annotation in plots.Journal of Com-
putational and Graphical Statistics, 9, 582–599.

See Also

demo(plotmath) , axis , mtext , text , title

Examples

x <- seq(-4, 4, len = 101)
y <- cbind(sin(x), cos(x))
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matplot(x, y, type = "l", xaxt = "n",
main = expression(paste(plain(sin) * phi, " and ",

plain(cos) * phi)),
ylab = expression("sin" * phi, "cos" * phi), # only 1st is take n
xlab = expression(paste("Phase Angle ", phi)),
col.main = "blue")

axis(1, at = c(-pi, -pi/2, 0, pi/2, pi),
lab = expression(-pi, -pi/2, 0, pi/2, pi))

## How to combine "math" and numeric variables :
plot(1:10, type="n", xlab="", ylab="", main = "plot math & n umbers")
tt <- 1.23 ; mtext(substitute(hat(theta) == that, list(tha t= tt)))
for(i in 2:9)

text(i,i+1, substitute(list(xi,eta) == group("(",list( x,y),")"),
list(x=i, y=i+1)))

plot(1:10, 1:10)
text(4, 9, expression(hat(beta) == (X^t * X)^{-1} * X^t * y))
text(4, 8.4, "expression(hat(beta) == (X^t * X)^{-1} * X^t * y)",

cex = .8)
text(4, 7, expression(bar(x) == sum(frac(x[i], n), i==1, n )))
text(4, 6.4, "expression(bar(x) == sum(frac(x[i], n), i== 1, n))",

cex = .8)
text(8, 5, expression(paste(frac(1, sigma*sqrt(2*pi)), " ",

plain(e)^{frac(-(x-mu)^2, 2*sigma^2)})),
cex = 1.2)
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