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Introduction

Manipulating vectors, matrices, and data frames, in orm@ngalyze data, lies at the heartRf
TheR projectis a beneficiary of the great strides which have aeduin numerical computations
ever since the advent of the digital electronic computekihtpeasy access to computational
resources liké, the author of statistical analyses is able to include imntadport without much
effort and expense pictures of data and graphs of functibhey are indispensable devices
when writing a report for describing data and explainingotige The graphical capabilities of
R are versatile; graphs are easy to make. The painstakingngtol limestone slabs which
required many hours of labor for lithographers to acconhgiizs been eliminated because graphs
and figures with the highest quality for immediate publicatcan be made by authors with
free statistical and mathematical typesetting computegnams. It is by virtue of the licensing
of R under the General Public License (GPL) which has made itilplesk obtain this free
and reliable statistical computer program which enjoys/aatevelopment from all corners of
the world. Here, we will learn, by beginning with constructisimple graphs, how to create
a complex graphical image like the one shown in Figure 1. Vétaena command is enclosed
in a rectangle, a situation which occurs very often in thestes) the command is meant to be
executed by the reader as if it belongs to a tutorial. The @hoin is used to separate distinct
commands when it is deemed convenient to write the more thamoemmand on the same line,
and the # symbol marks the beginning of a comment.

Washington, D.C.
February 2005
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Chapter 1

Graphs of Functions

1.1 Curves

A graph of a mathematical function may be create®irA simple graph to make is the one of
the mathematical functiosin(x)
curve(sin(x),-2*pi,2*pi)
It is plotted from—27 to 27. To embellish the picture with a title, labeled axes, and lines
of various styles, options @urve are used.
curve(sin(x),-2*pi,2*pi,main="Sine and Cosine Curves", xlab="Time",
ylab="Amplitude",col="red",Ity=5)
abline(h=0,col="blue",Ity=2)
If xlab=""andylab="" , then the axes are not labeled, angakt="n" andyaxt="n"
then the axes are not printed. This was done in order to supesge two graphs on each other.
In the next set of instructions, the cosine curve is superssed on the sine curve by using
par(new=TRUE) . The commandabline with h=0 adds a straight horizontal line.
curve(sin(x),-2*pi,2*pi,main="Sine and Cosine Curves", xlab="Time",
ylab="Amplitude",col="red",Ity=5)
par(new=TRUE)

col="green",Ity=5)
abline(h=0,col="blue",lty=2)

The syntax ofcurve allows for the specification of the domain sih(x) . The color of
the horizontal line is specified byol="blue" and the dotted style of the horizontal line is
specified byity=2

A more complete description of the options for useumve appears irPcurve , ?plot
and in?par . The commandpar , does not produce statistics or a graph. It sets the grdphica

1



2 CHAPTER 1. GRAPHS OF FUNCTIONS

parameters. Graphical parameters may be specified withlaténg function as was done in
making a picture of the sine function witlurve . The other way of setting a graphical param-
eter is by means of the commarnmdr . When a graphical parameter is set by meansaof, it

is used henceforth for the duration of the current sessiét ahless it is superseded by another
use ofpar .

In the description opar , there is an option which specifies the seven styles of lihes;

Table 1.1: Styles of Lines

blank
solid
dashed
dotted
dot dash
long dash
two dash

Ok, WNE,O

The optionsxlab andylab , allows for the arbitrary use of labels for the x and y axes.
The use okaxt="n" specifies that the x-axis must not be plotted. In the examiplieawing
a picture of the cosine functiorlab="" andxaxt="n" cause no labelling of the x-axis and
no use of a marked scale. Another option which is worth cargd is the optiortype="n"
It suppresses the image of the graphs, so that, only thatitleaxes are visible Sometimes such
a blank is useful on occasions of writing a examination inclilthe students are asked to plot
data on a prescribed template.

The first instance ofurve will produce the title, labeling of the axis, and the imagehu
first figure, while the second graph will be superimposed erfitist. The superimposition does
not occur automatically. Every time a plotting functiondiglot , curve , andmatplot is
used R erases any previous vestige of a plot and starts with a flieship order to superimpose
two images on the same plot, the commaad(new=TRUE) must be inserted in between the
two plotting functions as was done above for superimposiogsine plot onto a sine plot.

Another and better way to superimpose two graphs is with sieeofithe optionadd=T :

curve(sin(x),-2*pi,2*pi,main="Sine and Cosine Curves", xlab="Time",
ylab="Amplitude",col="red",Ity=5)

col="green",Ity=5,add=TRUE)

abline(h=0,col="blue",Ity=2)
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Sine and Cosine Curves
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Figure 1.1:

1.2 Surfaces

Engineers might like to make sine and cosine curves, butiatstean would be more interested
in drawing a response surface which he might use in a report arclassroom. The response
surface which appears in Figure 1.2 and is derived from tieali modely; = Gy + Giz; + €;
wheree; ~ N(0, 0?) was drawn by the following set of commands.
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Simple Response Surface

§
SRR
‘\\\\§\\\\\\“\\“\““\‘6
DR
NS “ ‘

7z

3ss
o~
7777

~Z 4

//,
7777
g7
7777

7))

W\

Z
77
7

Z

¢
7
//
25
X
C
"
S
S
RS
>
\\
N
N\

AN\
SSKS
20
NS

Figure 1.2:

sse<-function(beta0,betal){

x1l<- -1

yl<- -1

x2<-0

y2<-0

x3<-1

y3<-1

z<-(yl-betaO-betal*x1) ~2+(y2-beta0-betal*x2) ~2+(y3-beta0-betal*x3) 2
return(z)

}

betaO<-seq(-1,1,length=50)

betal<-seq(0,2,length=50)

z<-outer(beta0O,betal,sse)

par(cex.main=3,cex.lab=2,cex=1)

persp(betal, betal, z,d=1, theta = 30, phi = 0, expand = .8, co I = "lightgray",
xlab="beta0",ylab="betal",zlab="SSE",main="Simple Re sponse Surface")
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Normal Distribution: N(0,1)

Figure 1.3:

The command which creates the surface is the commargp() . It has several interesting
options likeexpand and the ones for specifying the angles of perspectivta andphi .
The response surface shows the case when the set of datatsafishe three co-linear points,
(-1,-1) ,0,0) ,and(1,1) . The response surface shown in Figure 1.2 is the representat

of the function,SSE = Z(yi — By — Biz;)?. The values ok andy of these co-linear points

are written in the body éf 1the functisse() as shown above. The variables of SSE @rand
(1. As in the case of drawing a picture of the sine and cosinetimmg, numerical values of the
variables must first be created. To that end, creatindota0 andbetal coordinates uses
the command for creating sequences. By trial and error, ¢éatowsbetal andbetal which
span a two unit intervals using 50 sub-intervals were chbseause they produced a graph of
the response surface that looked good, wherea, the valu#dsefeoordinatez, are stored in a
square matrix. It is understood that the horizontal aspkttteosquare matrix corresponds to the
x coordinate and the vertical aspect corresponds tg tt@ordinate as if by analogy the square
matrix were a multiplication table. The commarditer(beta0,betal,sse) , performs
the matrix multiplication of au x 1 vector by al x n vector to produce a x n matrix having
elements which produced by the evaluation of the funcsse(beta0,betal)

According to the manual page fptotmath  which is given verbatim in Appendix I,
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“Expressions can also be used for titles, subtitles and d-yaaxis labels (but not
for axis labels orpersp plots).”

Consequently, Greek letters cannot be displayed in theabmersp , even thought they can be
displayed in its title.

1.3 Annotation

Another curve which a statistician is inclined to includeaineport is the graph of a normal
distribution like the one shown in Figure 1.3. It was prodiibg following the same logic which
ordered the commands that produced the picture of the sme.cu

Student’s t Distributions

Figure 1.4:

par(cex.main=1.15,cex.lab=1.25,cex=1.5)
curve(dnorm(x,mean=0,sd=1),-3,3,yaxt="n",xlab=""", yl ab=""
main="Normal Distribution: N(0,1)")

A picture of Student’s t distribution can be similarly creatbut unlike any Normal distribu-
tion which can be transformed to the standard N(0,1), thex@s many t distributions as there
are degrees of freedom. In a picture of several superimpodistributions, there would be a
need to annotate the picture appropriately to identify &ewith its degree of freedom.
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Justification of Text Positioning of Text
Using ad] Using pos
10 00 3
+ 2+ 4
11 01 1
Figure 1.5: Figure 1.6:

par(cex.main=1.15,cex.lab=1.25,cex=1.5)

main="Student’s t Distributions")
curve(dt(x,2),-3,3,yaxt="n",ylab=" ",lty=2,add=TRUE)
par(cex.main=1,cex.lab=1,cex=2)
tl.str<-expression(paste(t[10]))
text(1,dt(1,10),t1.str,adj=c(-.25,0))
t2.str<-expression(paste(t[2]))
text(-.75,dt(1,10),t2.str,adj=c(-.75,0))

In this example of annotating a graph as shown in Figure ltdleaappears on the graph,
but there are different styles of lines and text has beereglat certain specified positions in
the graph. The curve with the solid line corresponds to thel&it’s t distribution with ten
degrees of freedom. To pla¢g near the solid line, théext command is used in which the
first entry is the x coordinate of the position, and the secemidy is the y coordinate of the
position. In the above examplext(1,dt(1,10),t1.str,adj=c(0,0)) specifies that the text
which is contained in the objedtl.str , shall be placed at the coordinatdsdt(1,10))
wheredt(1,10) s the ordinate of the Student’s t distribution with degrees of freedom at
x = 1. The optionadj=c(0,0) , specifies the way in which the text is justified relative te th
coordinates of the text. A schematic depiction of the effexftadj on the justification of the
text is shown in Figure 1.5 and described in Table 1.2. In fedu5, the cross hairs mark the
location of the x and y coordinates of the text, and the locetiof00, 01, 10, and11 show the

effects of usingad;j .
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0O O North East 1 Bottom
0 1 South East 2 Left
1 0 North West 3 Top
1 1 South West 4 Right
Table 1.2: Justification of Text Table 1.3: Position of Text

A similar option toadj for adjusting the justification of a text about its positi@rtihe option
to position the text strictly in the vertical or horizontatettion. It is denoted bpos, and the
effects of its options appear in Figure 1.6. This option Wwélused in the next section.

1.4 Polygons

Another indispensable embellishment of a picture is theadrshading the interior of a curve.
The shading is accomplished by means of polygons.

par(cex.main=1,cex.lab=1,cex=2)
stitle<-expression(paste("Meaning of the F Quantile, "
Flnu[a,"inuf2]1[";"l[alphal))
curve(df(x,df1=3,df2=5),0,5,yaxt="n",xlab="",ylab="
axis(1,at=c(0), labels="0")
par(cex.main=1,cex.lab=1,cex=3)

axis(1,at=c(1.7), labels=expression(atop("
FlnuL]I(","linu2]][";"][alpha])))
lines(chind(1.7,1.7),cbind(0,df(1.7,df1=3,df2=5)),I ty=5)
x0<-seq(1.7,5,.4)

y0<-df(x0,df1=3,df2=5)

xx<-c(x0,rev(x0))

yy<-c(y0,matrix(0,1,length(x0)))
polygon(xx,yy,col="gray", border = "red")
text(2.25,.02,expression(alpha),adj=c(0,0))

The set of commands which were used to create Figure 1.7insrs@veral new commands:
expression , axis , paste ,lines ,rev , polygon , atop , and some Greek letters. The
one which will be discussed here will pplygon .

By trial and error in making several plots of the F distributi the under the curve for the
interval(1.7.5) , produced a pleasing graph. In that interval, the area uhdecurve is sup-
posed to be shaded gray in order to emphasize the meaningiahtilg. To the end of using the
polygon command to do the shading, it is necessary to supply the x @odginates. In the
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Meaning of the F Quantile, Fy, y,.q Meaning of the F Quantile, Fy, y,.q

1
2 3,
1‘81716151413121110
a
\ \ \
0 Fvl,vz;a 0 Fvl,vg;u
Figure 1.7: Figure 1.8:

example given above, the x and y coordinates forgblygon command must be chosen in
such a way that the coordinates follow a path around the péeinof the shaded area as depicted
in Figure 1.8. The first element @k and the first element gfy are the coordinates of the point
labeled 1. The second elementof and the second elementyf are the coordinates of point
2, and so on until a complete circuit about the shaded aread@asmade.

The vectorsxx andyy, were constructed so as to follow the path around the shadada
convenient command to manipulate a vector to reverse dreistthe commandev() . It will
reverse the order of the elements of a vector. By concatenttie elements af0 which run
from 1.7 to 5 by .4 units with a vector of elements which runsewverse order from 5to 1.7 by
4, the following command was usex{x0,rev(x0)) . The top part of the shaded area when
X0 runs from 1.5 to 5 is the ordinate of the curve which is produoyg the F distribution, i.e.
df(x0,df1=3,df2=5) . The bottom side of the shaded area which correspong8 toom
5 to 1.7 has ordinate 0; thereforg, was created by concatenatidf(x0,df1=3,df2=5)
with a vector of all zeros. When the elementsxgf andyy are combined, they correspond to
the coordinates of the points which are depicted in Figuse 1.

The set of commands which produced Figure 1.8 and whichdeslthe commands written
in italics is shown below. The commands which are given ilicggorint the points and write the
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numbers which lie around the perimeter of the shaded area.

par(cex.main=1,cex.lab=1,cex=2)
stitle<-expression(paste("Meaning of the F Quantile, "
Flnu[ar,"inuf2]1[";"l[alphal))
curve(df(x,df1=3,df2=5),0,5,yaxt="n"xlab="",ylab="
axis(1,at=c(0), labels="0")
par(cex.main=1,cex.lab=1,cex=3)

axis(1,at=c(1.7), labels=expression(atop(" ",F[nu[1]] [*,"IInul2]][";"[alpha])))
x0<-seq(1.7,5,.4)

y0<-df(x0,df1=3,df2=5)

xx<-c(x0,rev(x0))

yy<-c(y0,matrix(0,1,length(x0)))
polygon(xx,yy,col="gray", border = "red")
par(cex.main=1,cex.lab=1,cex=1)

poi nts(xx,yy,pch=20)

par(cex=.8)

for (i in 1:(Iength(>x)/2)){

text(odi],yyli] ,i,pos=3)

}

for (i in ((Iength(>xx)+ 2)/2):length(xx)){
text(xx[i],yy[i].i,pos=1)
}

The coordinates for use polygon must follow the right pattern. The vectotk , was di-
vided into two pieces, in order to write numbers directly\aba point as specified by the option
pos=3 and directly below a point bgos=1 according to the top and bottom of the shaded area.
Note thatadj=c(.5,.5) means dead center justification. The commpadcex=.8) ad-
justs the scaling of the written text, and the additional owand points(xx,yy,pch=20) ,
create the points with point symbol set to 20. An array of sgtalwith identification numbers
is given in Figure 1.9.

All of the different symbols which are available infor use in making graphs are shown in
Figure 1.9, and the set of commands with produced Figureslg&en below. The semi-colon
is used to separate distinct commands when it is deemed miemie¢o write the more than one
command on the same line.
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Symbols for Points. Use pch = <number>

10 e\/ 11X:X 6@ 21@

2/N 7 12 1A 2H

3 8K 1B  18¢ 24

4 < 9<]> 1 10@ 2A

s> 10h 5@ we 5Y

Figure 1.9:

ipch <- 1:25; dd <- c(-1,1)/2

rx <- dd+ range(ix <- (ipch-1) %/% 5)

ry <- dd+ range(iy <- 3 + 4-(ipch-1) %% 5)
plot(rx, ry, type="n", axes = F, xlab = "™, ylab =
main = "Symbols for Points. Use pch = <number> ")

abline(v=ix, h=iy, col = "lightgray", Ity = "dotted")

for(i in ipch) { # red symbols with a yellow interior (where av ailable)
points(ix[i], iy[i], pch=i, col="red", bg="red", cex = 4)

text (ix[i] - .3, iy[i], i, col="black", cex = 1.5)

}

1.5 Greek Letters and Formulas

A striking feature of Figure 1.7 besides the inclusion of ad#d area is the presence of Greek
letters and mathematical notation. The syntax for annaatigraph with mathematical formulae
is given in Appendix I. The syntax is not the syntax which isdign ETEX but it does bear a re-



12 CHAPTER 1. GRAPHS OF FUNCTIONS

semblance. For example[nu[1]][","I[nu[2]][";"][alpha] is the syntax for creat-
ing F, ... Which in BTEX is written in mathematics mode &s {\nu_1,\nu_2;\alpha}

Greek letters are spelled in English, and square brackettecsubscripts. It is, however, nec-
essary to use the commasapression() when including Greek letters and mathematical
symbols in a graph. The statement for creating the obgtitle  , which contains the text of
the title is given below:

stitle<-expression(paste("Meaning of the F Quantile, "
Flnu[ar™,"inuf2]][";"lalphal))

In order to put the mathematical expressiépn, .., into the title, it must be pasted to the
English part of the title. An example of the syntaxpsste() is paste(a,b)  which will
produceab. In an object oriented programming language kkehere are such things abjects,
classes, methods where tasks are organized by functions, objects are orgaiiy classes, and
functions and classes are brought together by methods.|ldaggexpression, contains elements
which are expected to be unevaluated. By applying the cordpexpression() , to the
result ofpaste() , the English and mathematical formula is treated as an @ieai¢he class,
expression which inturnis used plot()  to annotate the graph with a combination of English
and mathematical notation in the title.

1.6 Legend and Identifying Points

In all of the examples discussed thus far, the plots have tie@athematical functions for which
curve is used. Statisticians like to make pictures of data. By etteg | apropos("plot")

, the result will prove that there are many commands with Wwiicmake pictures of data R.
Rather than make a graph of a mathematical function, theviiallg examples will make plots
of data. Before making pictures of data, we will describedbestruction of a legend and the
printing of a graph onto paper.

Incorporating a legend into the plot for identifying the tworves seems appropriate, but
where should it be placed? Tlhecator function will produce the coordinates at that place
on the plot where the cursor is placed and the left key of thesealicked. Two points will be
specified inocator . One point will coincide with the upper left corner of the éegl, and the
second point will coincide with the lower right corner of tlegend. By means of the cursor,
these two points will be used B to place the legend of the right size in the right place.

legend(locator(n=2),legend=c("Summer","Winter"),col =c("red","green"),
lty="1")

To see whalocator  produces, execuqe locator(n=2) and click when the cursor is where
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the upper left and lower right corners of the legend shoulglbeed. Explicitly,locator
produces coordinates. The coordinates whadtator  furnishes are automatically utilized by
the legend command. Even though, it is convenient to ingatpdocator  directly in the
legend command, putting the actual coordinates whigbator  provides into the legend
manually makes it possible to reproduce the plot with themegn exactly the same position.

legend(c(49.75750,75.37375),c(0.9460465,0.7325581),
legend=c("Sine","Cosine"),col=c("red","green"),lty= "1")

A written report includes graphics, and unless a graph caorinéed on paper it cannot be
used in a report. A graph which is created®gan be saved as was done in the preceding exam-
ple to a file in a Postscript format which is recognized by mogeinters. The last command,
dev.off() ,inthe last set of instructions terminates the use of thplgea device and causes
the image to be sent to the filkknp/CPIl.ps . Rather than create a Postscript file of the image,
the graph can be saved in a PNG format by using the command:
png(file="/tmp/CPl.png", bg="transparent”, width=600, height=800)
in place of thepostscript command.

postscript(horizontal=F,file="/tmp/CPl.ps")
col=c("red","green"),xlab="Time",ylab="Amplitude")
abline(h=0,,col="blue",lty=2)
legend(c(49.75750,75.37375),c(0.9460465,0.7325581), legend=
c("Sine","Cosine"),col=c("red","green"),lty="1")

dev.off()

1.7 Plotting Data

One of the most popular forms of presenting data for a si@tistis the histogram.
w<-c(83,85,74,70,92,64,72,87,88,75)

. There are various options R for producing

hist(w)
histograms with different styles. A histogram which dig@#he relative frequency is produced
by: | hist(w,prob=T) ; with absolute counts by| hist(w,prob=F) . The sizes of the

bins may be specified by means of threaks option as is done here:
br<-seq(40,100,5)
hist(w,breaks=br,prob=T,main="Exam Scores from Watchin g Videos",xlab="Scores")
It is often desired to superimpose a Normal distribution dwséogram by using:
curve(dnorm(x,mean=mean(w),sd=sd(w)),add=T)
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Normal Fit Binomial Fit
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Figure 1.10:
1.8 Side-by-Side

Two graphs can be placed side-by-side by means of ymngnfrow=c(1,2)) . For exam-
ple,

w<-c(83,85,74,70,92,64,72,87,88,75)
br<-seq(40,100,5)

par(mfrow=c(1,2))

par(cex.lab=1.5, cex.main=1.5,cex=1.5)

hist(w,breaks=br,prob=T,main="Normal Fit", xlab="Scor es",col="red")
curve(dnorm(x,mean=mean(w),sd=sd(w)),add=T)
hist(w,breaks=br,prob=T,main="Binomial Fit", xlab="Sc ores",col="red")

curve(dbinom(round((x-40)/60*length(w)),
length(w),mean((w-40)/60))/6,40,100,add=T)

The key command for putting two plots side-by-side on theespage is the parameter state-
ment,par(mfrow=c(1,2)) . To put four plots on the same pagar(mfrow=c(2,2)) is
used. Similarly, to put three columns in two rows of plotsioa$ame pagear(mfrow=c(2,3))
is used. To reset the frames so that only one plot appearsageapse par(mfrow=c(1,1))

Suppose another set of data besagas obtained and is assigned to the object,
x<-c(95,81,59,68,74,79,72,70,81,58)
The set of data contained i and the set of data containedxnwere obtained in a process
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which makesvandx independent sets of data. The set of data are scores from an examina-
tion in understanding French from students who attend i@agss lectures whereas contains
examination scores for proficiency in French from studerite also listened to audio tapes of
French. We wish to see the data of both:

plot(w,x) Some points lie far away from the rest of the data. The comndetify
will allow us to find which points in the data produced the psiof interest in the plot.
identify(w,x) A more ambitious goal might be to place the names of the paintthe

plot as a result of identifying some of them as in the follogvaxample of identifying four points
and saving the resulting image to a Postscript file:
w<-c(83,85,74,70,92,64,72,87,88,75)
x<-c(95,81,59,68,74,79,72,70,81,58)
names<-c("A","B","C","D","E","F","G","H","I","J")
par(cex.lab=1.5, cex.main=1.5,cex=1.5)

plot(w,x,main="Scores from Lectures Alone versus Lecture s and Audio Tapes",
xlab="Only Lectures", ylab="Both Lectures and Audio Tapes "
identify(w,n=4,x,labels=names,plot=T)

dev.print( postscript, horizontal=FALSE, file="fig8.ps ")

After the points have been identified by means of using thearuthe plot will be saved to
fig8.ps

1.9 Box Plots

A single box plotis simple to make. Supposge-c(83,85,74,70,92,64,72,87,88,75)
then a box plot of this data can be made byboxplot(w)

A useful aspect of boxplots can been seen when a series ofibisgpe put side-by-side in
the same plot. This arrangement of box plots offers a quielv\of the relationship of the sets
of data with each other. The following set of commands widlate four box plots of the scores
in French depending on classroom instruction only givem,ithe use of only video tapes given
in w, the use of only audio tapes givenyinand the use of only a textbook givenan

w <-¢(83,85,74,70,92,64,72,87,88,75)

X <-¢(95,81,59,68,74,79,72,70,81,58)

y <-c(86,71,49,63,65,72,78,68,85,65)

z <-c(87,61,45,81,72,67,66,51,55,58)

p<-list(w,X,y,z)

boxplot(p,main="Box Plots of French Scores",

ylab="Scores" ,xlab="",xaxt="n",horizontal=FALSE)

axis(1,at=c(1,2,3,4), labels=c("classroom","video"," audio","text"))

The use of thdist  allows the simultaneous plotting of the four box plots in @aure,
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Box Plots of French Scores
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and the use adixis puts nice labels on the x-axis at positions 1, 2, 3, and 4 ecisly.

1.10 Confidence Intervals

One of the most important concepts in statistics is the cenfid interval. For a small enough
population, it might be feasible to obtain all the desirefdimation about it, like the mean and
the variance. Almost always, there is limited time, andehae insufficient financial resources
to examine the entire population. Instead, a sample of tpelpton is usually drawn which, if
it is done properly, will represent the population in whicse the mean of the sample will be
close to the mean of the population, and the variance of timgkeawill be close to the variance
of the population. The statistics which are derived from mga cannot except in extremely
rare events be exactly the same as the correspondingissatisthe population. A good sample,
nonetheless, does contain accurate information abouiialgtion.

By means of confidence intervals, it is possible to infer sohaacteristics of the population
based on the set of experimental data which was obtaineddampling of the population. The
length of the confidence interval will indicate the precisad the data, and its location will indi-
cate the likely region which contains the parameter of ggtof the population. The importance
of the confidence interval lies in its use to substantiatenéerénce about the population.
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If a very large number of 95 percent confidence intervals &o#eal, then, on the average,
95 percent of them will cover the true population mean. We ugeR to produce a picture of
twenty 95 percent confidence intervals to illustrate themmegpof confidence intervals.

Twenty 95 percent Confidence Intervals

© |
S

<
<)

0.2

0.0

Length

0.4

The example begins by defining a functian,. Every command aftef and before be-
longs to the function. A function iR is akin to a sub-routine in FORTRAN or to a module in
SAS/IML. A vector of30*n random numbers is generated from a standard Normal digtibu
The vectory, is converted into a matrix consisting of 30 rows of n columiige lower limit of
the 95% confidence interval is

<
|
~
S
&
R
B

which will be translated in th® language as:
mean(y)-qt(.975,length(y)-1)*sgrt(var(y)/length(y))
The upper limit is the same except that aymbol is used instead of the minus sign.
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ci<-function(n=20){
y<-matrix(rnorm(30*n,0,1),nrow=30)
lower<-apply(y,2,function(y)(mean(y)-qt(.975,
length(y)-1)*sqrt(var(y)/length(y))))
upper<-apply(y,2,function(y)(mean(y)+qt(.975,
length(y)-1)*sqrt(var(y)/length(y))))

"Twenty 95 percent Confidence Intervals",ylab="Length")
z1<-cbind(1:n,1:n)

z2<-chind(lower,upper)

matlines(t(z1),t(z2),Ilty="solid")

abline(h=0)

}

ci()

The last command;i() , will execute the function which will produce the 20 confiden
intervals.

The trick whichR provides is given by the commaagply . It means that a function is to be
applied to each record of a column. Thatapply(y,2,function(y){...}) will apply
the function to every column gf. The commandapply(y,1,function(y){...}) , will
cause the function to be applied to every rowyofapply is a peculiar though very handy
command whictR inherited from S. There is no corresponding command in FORYRYr in
SAS/IML, like apply .

The procedure usesatplot to plot the end points of the twenty confidence intervals @en th
plot. Two vectorsz1l andz2, are created which contain the end points of the twenty cenéd
intervals, but the end points are made invisible by the optigpe="n" . The x coordinates
of the lower and upper limits are containedzh and the y coordinates for the lower and up-
per limits are contained in2. The lower and upper limits are connected with a solid line by
means ofmatlines . The true population mean is denoted by the horizontal Ineated by
abline(h=0) . That 18 out of 20 confidence intervals appear to cover thellpipn mean
substantiates the theory that, on the average, 95% of thfedeane intervals will contain the
population mean.
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Data Frames and Levels

A data frame is a collection of variables which have the sangth. Its structure is like an array
in which the elements of a column correspond to the elemdrdssariable. Some permissible
manipulations of a data frame are like those of an array orixpdiut they cannot be fully
extended to matrix algebra. In order to apply the operatodmsatrix algebra on data frames, a
data frame must be converted to a matrix. The ndchevill be given to the object which will
be the data frame of the following examples. The data framévednitialized by the command:

>dd<-data.frame() anddd will consist of the five variables:
>year<-c(1992,1993,1994,1995,1996,1997,1998,1999)
>ford<-c(38.38,52,58.75,26.88,34.38,23.02,45.81,63. 94)
>yen<-c(133.2,121,103.2,89.4,106.3,124.1,132.1,120. 4)
>eu<-c(1.64,1.61,1.67,1.38,1.48,1.68,1.85,.93)
>poors<-c(407.36,450.16,463.81,493.15,647.07,757.12 ,1101.75,1286.37)

>dd<-data.frame(year,ford,yen,eu,poors)
>names(dd)<-c("Year","Ford","Yen","EU","SP")

To assemble these five variables into the data frame, thewfimly command is executed:

>dd<-data.frame(year,ford,yen,eu,poors) . The resulting structure afd can be dis-
played by | >str(dd) . The commandtr() is like theproc contents procedure of
SAS.

The first order of business in analyzing a set of data is to naageture of the data. Let
us examine the price of Ford common stock per share as a dmnafithe exchange rate for
Japanese Yen, Euro, and the Standard and Poors (S&P), ind#xtze beginning of the year.
According to theory, the higher the exchange rate of yen p#ador euro per dollar rises, the
more affordable Ford automobiles become relative to Jagaed German imported cars and
therefore the greater the demand for Ford common stockelfttbory is correct, there should
appear discernible patterns between the variables anditteeqs Ford stock.| >plot(dd)

19
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No simple functional relationship is apparent between tiepf Ford stock and the other
variables of interest upon inspecting the plot of the dataaAesult, a statistical analysis of the
data will probably produce no useful information.
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2.1 Factors and Levels

There is a structure iR which is associated with a class called factor. A factor igexg&l type of
vector which is designed to contain non-numeric data knosvoadegorical data. The elements
of a factor are strings and they are assigned to a level. Thaviog example illustrates the
creation of a factor based on a set of data which was obtaioetdd survey of 51 people. They
were asked to rate their satisfaction with their jobs adogrtb seven categoriedon’t know
very dissatisfied , dissatisfied ,SO so, satisfied , andvery satisfied

Some one who did not respond was give a NA for an answer. Ndtatein the vectojob |,
there are nine occurrences of the resposeeso . The vector was created by tfector()

command. Its basic syntax ifactor(c(...), levels=c(...)) . The entries of the
data and the names of the levels must agree.
job<-factor(c("so so","satisfied","very satisfied","s atisfied",
"very satisfied","very satisfied","so so0","very satisfi ed","NA",
"so so","satisfied","satisfied","so so0","so so0","satis fied",
"satisfied","so so","very satisfied","very satisfied", "satisfied",
"don’t know","so so0","very dissatisfied","NA","very sat isfied",
"very satisfied","so so","very satisfied","very satisfi ed",
"very dissatisfied","satisfied","satisfied","so so"," very satisfied",
"NA","satisfied","satisfied","satisfied","very satis fied","satisfied",
"dissatisfied","very satisfied","satisfied","dissati sfied",
"satisfied","NA","very satisfied","satisfied","satis fied",
"satisfied","satisfied"),
levels=c("NA","don’t know","very dissatisfied","dissa tisfied",
"so so","satisfied","very satisfied"))
edu<-factor(c("high school","high school","masters"," college",
"college”,"masters","masters","college”,"high school " "high school",
"PhD","masters","college","high school","college”,"h igh school”,
"PhD","college”,"high school","masters”,"PhD","maste rs","masters",
"PhD","PhD","college","masters","college","college" ,'masters",
"masters”,"masters","masters"”,"masters","high school " "college",
"masters”,"masters","masters"”,"masters","grade schoo I","PhD",
"masters”,"high school","college”,"college”,"masters ""PhD",
"college”,"college”,"masters"),levels<-c("other","P hD",
"masters”,"college","high school","grade school"))
par(cex.main=2,cex.lab=2,cex=1)
plot(edu,job,main="Job Satisfaction versus Education",
col=c("red","blue","yellow","green","brown","pink", "cyan"))

Likewise, the vectoredu, was created by the commarfdctor . Both vectorsjob and
edu, have the same length. The advantage of creating thesevettmategorical data is evident
in the graph odu versugob . Within each column for a level of education, there are aador
regions having relative areas corresponding to the freggueheach level. The colors are stip-
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ulated in theplot() = command. The plotting routine will cycle through the listsgecified
colors with each occurrence of a level as illustrated in Feg 1.

Job Satisfaction versus Education
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don’t know
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Figure 2.1:
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Least Squares and Data Frames

w<-c(83,85,74,70,92,64,72,87,88,75)
x<-c(95,81,59,68,74,79,72,70,81,58)
y<-c(86,71,49,63,65,72,78,68,85,65)
z<-c(87,61,45,81,72,67,66,51,55,58)
To assemble these four variables into the data frame, thewioly command is executed:
dd<-data.frame(w,Xx,y,z)

To illustrate the use ofm in making pictures which may be appropriate in the study of
linear model, the next example will focus on the problem oiigt a linear modetiassroom =
Bo + Prvideo + Boaudio + Pstext + € wheree ~ N(0, 02) to the data contained ihd . Suppose
that the set of data already exists in the data fratuk,so thatim() may immediately be
applied toit.| Im(dd) Under the heading dfoefficients , the estimateg, = 64.39754,
61 = 0.50043, B, = —0.05749, and5; = —0.28372 appear. The same results are produced in
the following equivalent formulation. Im(w ~x+y+z)

The syntax which represents the model has the fowx+y+z . All the necessary infor-
mation for performing an analysis of variance is contaimethe output of thém and can be
passed to a subsequent proceduredikeva() : | anova(mw ~x+y+z)) |. Ratherthan type
the commandm(w ~x+y+z) , many times over again, the procedure can be assigned to an
objectsuch as: w.m<-Imw ~x+y+z) | While expressed as an object, the output oitihgro-

cedure can be easily analyzed by means of applying varidiiesto it, like: | anova(w.Im)

. Inthe case of fitted(w.Im) , this procedure produces the fitted values of the linear inode

while theresid procedure will produce the residuals of the linear modetesid(w.Im)

. These two procedures make it easy to produce the very iamaitagnostic plot of residuals
versus predicted values to help determine whether or nahtidel is a good model.

23
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abline(h=0)

plot(fitted(w.Im),resid(w.Im),main="Residuals versus Predicted Values",
xlab="Predicted Values", ylab="Residuals")

To make a picture of the data is one of the very first steps inathaysis of data. In
this example, the line which best fits the data is drawn and &nnotated with its equation.

x<-c(95,81,59,68,74,79,72,70,81,58)
y<-c(86,71,49,63,65,72,78,68,85,65)

boty<-y[order(y)][1:2]
topy<-y[order(-y)][1:2]
botx<-x[order(y)][1:2]
topx<-x[order(-y)][1:2]

for (j in 1:.5{
points(botx[j],boty[j],col=2,pch=20)
points(topx[j],topy[j],col=4,pch=20)
}

plot(x,y,main="Semester Course Grade vs Quiz Grade",
xlab="Quiz Average’,ylab="Semester Score’)

par(lty=1)

coef<-Isfit(x,y) $coef

abline(coef=coef,Ity=2)

B.str<-paste("y=",round(coef[1],2),"+",round(coef[2 1,2),"x")
text(median(x),coef[1]+coef[2]*median(x) - 1,B.str,po s=4)

Instead of using the combination:

coef<-Isfit(x,y) $coef
abline(coef=coef,lty=2)

the simpler command can used instead:

abline(Isfit(x,y),lty=2)

3.1 Logistic Regression

As soon as a random variable is defined in the context of a phenon, an associated prob-
ability distribution is immediately induced. Some prob#pidistributions occur so often that
they are given names. If a random variable has only two plessdues which correspond to
two and only two outcomes then it is called a Bernoulli randaariable, and it is denoted by
X ~ b(1,p) where 1 stands for one trial and p is the probability of susdkat the event will
occur. A Bernoulli random variable is characterized by hgwone trial with two possible out-
comes: success-failure, on-off, 0-1, accept-reject, maman, etc.. Sometimes the Bernoulli
random variable is referred to as being dichotomous.

Usually, when formulating a model particularly in the sdaiad biological sciences, the sex
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of a person or the sex of an animal is used to help explain occomg. For example, the vari-
ables sex, age, years of education, religion, occupatiwhttze number of dependent children
might be used to predict a person’s annual income. On the b#rel, it is conceivable that age,
education, religion, number of dependent children, octapaand personal income could be
used to predict a person’s sex. Similarly, temperaturestam of soil, and pH might be used
to predict whether a seed will germinate or die. Or a credid c@mpany might use age, sex,
personal income, and personal debt to determine if an apylfor a credit card is a good or bad
credit risk,

In these last examples, the response variable is a Bermantiom variable because there are
only two possible outcomes. Because the response can @uynagwo possible values, such a
model cannot be analyzed in the same manner as a regularrnoeke|.

Consider the example of using a person’s examination soqueedict whether he will pass
or fail a course. From a previous class, the following talbkcores and outcomes were observed.

Table 3.1: Examination Scores and Pass-Fail in a Course

Score| Pass=1, Fail=C
1 0
2 0
3 0
4 0
5 0
6 0
5 1
6 1
7 1
8 1
9 1
10 1

A plot of the data appears in Figure 3.1. It shows two level& at 0 and another at 1.
An analyst would like to predict the probability of a studguaissing the course based on
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his exam score. In order to accommodate the analyst’s dgwamethod of logistic regression is
available. Unlike the method of least squares from whiclihedsrived and compact formulas

exist, the method of logistic regression uses least squadtgsctly in a rather obscure procedure
which can only be processed by means of a computer. Thereaeguations with which some

one can use to produce a fitted logistic curve to the data bg.hesa result, the discussion of
logistic regression tends to be either heuristic or higathhical.

A smooth function which approximates a step function ligbatbasis of logistic regression.
In the picture of the data taken from Table 3.1 and shown inf&i@.1, two distinct levels exist:
one at y=0 and the other at y=1. The logistic function apprates a smooth connection of the
two levels as shown in Figure 3.2 where the logistic funcigoshown superimposed on the plot
of the data.

The equation of the logistic function has the forfiiz) = lfe In logistic regression, the
probability denoted by p that a trial will lead to a succesassumed to follow the logistic
function. In the most simple case, it is assumed that

eao—i-ozlz
P= 17 caotars
This equation can be rearranged through a series of algetieps intoiog(l%p) = ap + 2.
The right hand side of the equation bears a resemblance t@arlmodel in two parameters,
hence, the association of logistic with regression. Givendata consisting of 1's for success
and 0’s for failure and their respective values for X, a cotapstatistics package will compute
oo anda; from a complex algorithm.
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Fitted Logistic Function
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Figure 3.2:

library("brir")

x<-c(1, 2, 3, 4, 5, 6, 5, 6, 7, 8, 9,10,11)

y<-¢(0,0,0,0,0,0,1,1,1,1,1,1,1)

coef<-brir(y x,br=FALSE)$coef

par(cex.lab=2, cex.main=2,cex=1.25,cex.axis=1.8)

plot(x,y,xlab="Test Scores", ylab="Pass-Fail",

main="Fitted Logistic Function")

curve(exp(coef[1]+coef[2]*x)/(1+exp(coef[1]+coef[2] *x)),1,10,add=TRUE)

The results of having applied a statistical computer pagkagthe set of data shown in
Table 3.1 show that the logistic function which best fits thept of the data is the one with
ap = —8.75 anda; = 1.59. The graph of this particular logistic function appears igufe 3.2.

Suppose a new student received a score of 5 on the examintagorthe probability that he
will pass the course is:

R edotaiz
R

R o—8-75+1.59(5)
P=7 1 e—8.75+1.59(5)
5 = 31

The probability that the student will pass the course witb@e of 5 on the examination is
31,
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The ratioﬁ is called the odds. For example, if the probability that askawxill win a race

is 10/11 then the odds ari—f/l—lll = % = 10 : 1 that it will win. Or conversely, if the odds are 5:4

that a horse will win, the probability igi = ;2> = g—ﬁ = 5/9. Theoddsratio is defined to be:

b1
¢_ 1_]91 _eal

Do
1 —po

ota1

and if x=0, then

andlog(y) = «; is called thdog ratio. For example, if x=1,thep; = ﬁiuw

Py = % From the previous example, = —8.75 anda; = 1.59 sothat) = ¢'*° = 4.9. The

i~ 1eodds of passing __ 4.9 : . . . .
odds ratio isg;; 2 = 5=, The interpretation that would be given is that for an inseea

in grade by one unit the odds of passing increases by a factio® 0
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acpclust.R

### Code by Eric Lecoutre, Universite catholique de Louvain , Belgium
### Winner of the R Homepage graphics competition 2004

### Works in R 1.8.1 ...

require(ade4)
require(mva)
require(RColorBrewer)
require(pixmap)

#

postscript(horizontal=FALSE, file="acpclust.ps")
[titte=function(x,backcolor="#e8c9c1",forecolor="da rkred",cex=2,ypos=0.4){
plot(x=c(-1,1),y=c(0,1),xlim=c(0,1),ylim=c(0,1),typ e="n",axes=FALSE)
polygon(x=c(-2,-2,2,2),y=c(-2,2,2,-2),col=backcolor ,border=NA)
text(x=0,y=ypos,pos=4,cex=cex,labels=x,col=forecolo r

}

# plotacpclust(USArrests)

plotacpclust = function(data,xax=1,yax=2,hcut,cor=TRU E,clustermethod="ave",
colbacktitle="#e8c9c1",wcos=3,Rpowered=FALSE,...){

# data: data.frame to analyze

# xax, yax: Factors to select for graphs

# Parameters for hclust
# hcut

29
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#  clustermethod

require(ade4)
pcr=princomp(data,cor=cor)
datac=t((t(data)-pcr$center )/pcr$scale)

hc=hclust(dist(data),method=clustermethod)
if (missing(hcut)) hcut=quantile(hc$height,c(0.97))

def.par <- par(no.readonly = TRUE)
on.exit(par(def.par))

mylayout=layout(matrix(c(1,2,3,4,5,1,2,3,4,6,7,7,7,
widths=c(4/18,2/18,6/18,6/18),heights=c(lcm(1),3/6,

par(mar = c(0.1, 0.1, 0.1, 0.1))
par(oma = rep(1,4))

ltitle(paste("PCA ",dim(unclass(pcr$loadings))[2], "v
text(x=0,y=0.2,pos=4,cex=1,labels=deparse(pcr$call)
pcl=unclass(pcr$loadings)
pclperc=100*(pcr$sdev)/sum(pcr$sdev)
s.corcircle(pcl[,c(xax,yax)],1,2,sub=paste("(",xax,
round(sum(pclperc[c(xax,yax)]),0),"%",sep=""),possu
csub=3,clabel=2)
wsel=c(xax,yax)
scatterutil.eigen(pcr$sdev,wsel=wsel,sub="")

dend=hc

dend$labels=rep(",length(dend$labels))
dend=as.dendrogram(dend)
ngrp=length(cut(dend,hcut)$lower)
Ititle(paste("Clustering ",ngrp, "groups"),cex=1.6,yp
par(mar = c(3, 0.3, 1, 0.5))

# Dendrogram
attr(dend,"edgetext”) = round(max(hc$height),1)

plot(dend, edgePar = list(lty=1, col=c("black","darkgre

edge.root=FALSE,horiz=TRUE,axes=TRUE)

abline(v=hcut,col="red")
text(x=hcut,y=length(hc$height),labels=as.character
col="red",pos=4)

CHAPTER 4. ACPCLUST.R

8,9,7,7,7,10,11),ncol=4),
1/6,lcm(1),1/3))

ars"),cex=1.6,ypos=0.7)

,col="black")

"-yax,") ",

b="bottomright",

0s=0.4)

¥y,

(round(hcut,1)),



colorsnames= brewer.pal(ngrp,"Dark2")
groupes=cutree(hc,h=hcut)
ttab=table(groupes)

# Groups
par(mar = ¢(0.3, 0.3, 1.6, 0.3))
#names.arg=paste("g",ngrp:1,sep="")

mp=Dbarplot(as.vector(rev(ttab)),horiz=TRUE,space=0, col=rev(colorsnames),
xlim=c(0,max(ttab)+10),axes=FALSE,main="Groups",axi snames=FALSE)
text(rev(ttab),mp,as.character(rev(ttab)),col=rev(c olorsnames),cex=1.2,pos=4)

# Main ACP scatterplot

par(mar = ¢(0.1,0.1, 0.1,0.1))
selscores=pcr$scores|,c(xax,yax)]

zi=apply(datac,1,FUN=function(vec)return(sum(vec”2) )
cosinus= cbind(selscores[,1]*2 / zi,selscores[,2]"2 / zi )
cosinus= chind(cosinus,apply(cosinus,1,sum))

ww= (cosinus[,wcos])*4 +0.5

# Outliers? Test with median+1.5*1Q

# Factor #1

out <- selscores[,1] < median(selscores[,1]) -

1.5 * diff(quantile(selscoresl,1],c(0.25,0.75)))

out = out | selscores[,1] > median(selscores[,1]) +
1.5 * diff(quantile(selscores],1],c(0.25,0.75)))

# factor #2

out = out | selscores[,2] < median(selscores|[,2]) -
1.5 * diff(quantile(selscoresl,2],c(0.25,0.75)))

out = out | selscores[,2] > median(selscores[,2]) +
1.5 * diff(quantile(selscoresl,2],c(0.25,0.75)))

plot(selscores,axes=FALSE,main="",xlab="",ylab="",t ype="n")
abline(h=0,col="black")

abline(v=0,col="black")

points(selscores[!out,1:2],col=(colorsnames[groupes D['out],cex=ww,pch=16)
text(x=selscores[out,1],y=selscores[out,2],
labels=dimnames(selscores)[[1]][out],col=(colorsnam es[groupes])[out])
box()

# Factor 1

par(mar = c(0.1, 0.1, 0.1, 0.1))

Iltitle(paste("Factor ",xax, " [",round(pclperc[xax],0) %], sep=""),

cex=1.6,ypos=0.4)
plotdens(pcr$scores|,c(xax)])
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# Factor 2

par(mar = c(0.1, 0.1, 0.1, 0.1))
Iltitle(paste("Factor ",yax," [",round(pclperc[yax],0)
cex=1.6,ypos=0.4)

plotdens(pcr$scores|,c(yax)])

# R logo
#plot(0,0,type="n",xlim=c(0,100),ylim=c(0,15),axes=

#if (Rpowered){

# logo <- read.pnm(system.file("pictures/logo.ppm", pac
# addlogo(logo, px=c(100- (101/77)*11,100), py=c(0, 11),
#}

#text(x=100-15,y=c(2,5),pos=2,labels=c("Powered by R <

#box()

}

confshade2 = function(y, xlo, xhi, col = 8.)

{

n <- length(y)

for(i in 1.:(n - 1.)) {

polygon(c(xlo[i], xlo[i + 1.], xhi[i + 1.], xhi[i]), c(y[i]
i + 1], y[i + 1.], y[i]), col = col, border = FALSE)
}

}

confshade=function(x, ylo, yhi, col = 8.)

{

n <- length(x)

for(i in 1.:(n - 1)) {

polygon(c(x[i], x[i + 1.], x[i + 1.1, x[i]), c(ylo[i], yloli
yhi[i + 1.], yhi[i]), col = col, border = FALSE)

}

}

plotdens=function(X, npts = 200, range = 1.5, xlab = ",
ylab = "™, main = ", ..)

{

dens <- density(X, n = npts)

qu <- quantile(X, ¢(0., 0.25, 0.5, 0.75, 1.))

X <- dens$x

y <- dens$y

fgux <- x[abs(x - qu[2.]) == min(abs(x - qu[2.]))]
fquy <- y[x == fqux]

fquX <- as.numeric(qu[2.])

tqux <- x[abs(x - qu[4.]) == min(abs(x - qu[4.]))]
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tquy <- y[x == tqux]
tquX <- as.numeric(qu[4.])
medx <- x[abs(x - qu[3.]) == min(abs(x - qu[3.]))]

medy <- y[x == medx]
# Prepare les donnees a dessiner
#

medX <- as.numeric(qu[3.])
dx <- dens$x

dy <- dens$y
dx2 <- c(dx[dx <= fquX], fquX, dx[(dx > fquX) & (dx <= medX)], m edX,
dx[ (dx > medX) & (dx <= tquX)], tquX, dx[dx > tquX])

dy2 <- c(dy[dx <= fquX], fquy, dy[(dx > fquX) & (dx <= medX)],
medy, dy[(dx > medX) & (dx <= tquX)], tquy, dy[dx > tquX])

IQX <- dx2[(dx2 >= fquX) & (dx2 <= tquX)]

#

#

# Initialise le graphique

#

# axes(axes = F, xlim = c(min(dx2), max(dx2)), ylim = c(min(d y2), max(d
#

# Dessine la densite

IQy <- dy2[(dx2 >= fquX) & (dx2 <= tquX)]

# Trace densit sous 1Q

#

plot(0., 0., xlim = c(min(dx2), max(dx2)), ylim = c(min(dy2 ), max(dy2)),
axes = F, xlab = xlab, ylab = ylab, main = main,type="n", ...)

# Ajoute mediane

#

#

confshade(IQX, rep(0., length(IQX)), 1Qy, col = "#bdfcc9" )
bdw <- (tquX - fquX)/20.

x1 <- c(medX - bdw/2., medX - bdw/2.)

x2 <- c(medX + bdw/2., medX + bdw/2.)

yl <- ¢(0., medy)

# Ajoute lignes wiskers

#

#

polygon(c(x1, rev(x2)), c(yl, rev(yl)), col = 0.

lines(x = c(fquX, fquX), y = c(0., fquy))

# Ajoute wiskers

#

#

lines(x = c(tquX, tquX), y = c(0., tquy))

meany <- mean(dy2)

IQrange <- tquX - fquX

lines(x = c(medX - range * IQrange, fquX), y = c(meany, meany) )
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lines(x = c(tquX, medX + range * IQrange), y = c(meany, meany) )

lines(x = c(medX - range * IQrange, medX - range * IQrange), y = c(meany -
(max(dy2) - min(dy2))/8., meany + (max(dy2) - min(dy2))/8. )

#

# Ajoute outliers

#

#

lines(x = c(medX + range * IQrange, medX + range * IQrange), y = c(meany -
(max(dy2) - min(dy2))/8., meany + (max(dy2) - min(dy2))/8. )

out <- ¢(X[X < medX - range * IQrange], X[X > medX + range * IQran ge))

#

# Ajoute les points...

#

# Ajoute l'axe
points(out, rep(meany, length(out)), pch = 5., col = 2.)
# Ajoute l'axe

#

#

points(dx2, dy2, pch = ".", type = "I")

#return(x = dessinx2, y = dessiny2)

axis(1., at = round(c(min(x), fquX, medX, tquX, max(x)), 2. ), labels = F,
pos = 0.)

invisible(list(x = dx2, y = dy2))

}

BoxDens=function(data, npts = 200., x = c(0., 100.), y = c(O. , 50.),

orientation = "paysage",
add = TRUE, col = 11., border=FALSE,colline = 1., Fill = TRUE)
{

dens <- density(data, n = npts)
dx <- dens$x

dy <- dens$y

ifladd == FALSE)

plot(0., 0., axes = F, main =

, Xlim = x, ylim =y, xlab = ",

ylab = ™)

if(orientation == "paysage") {

dx2 <- (dx - min(dx))/(max(dx) - min(dx)) * (x[2.] - x[1.]) * O .98 +
X[1.]

dE/12] <- (dy - min(dy))/(max(dy) - min(dy)) * (y[2.] - y[1.]) * O .98 +
y[1.

seqgbelow <- rep(y[l.], length(dx))

if(Fill == T)

confshade(dx2, segbelow, dy2, col = col)

if (border==TRUE) points(dx2, dy2, type = "I", col = colline )

}

else {

dy2 <- (dx - min(dx))/(max(dx) - min(dx)) * (y[2.] - y[1.]) * O .98 +



y[1]

dx2 <- (dy - min(dy))/(max(dy) - min(dy)) * (x[2.] - x[1.]) * O
X[1.]

seqleft <- rep(x[1.], length(dy))

if(Fill == T)

confshade2(dy2, segleft, dx2, col = col)

if (border==TRUE) points(dx2, dy2, type = "I", col = colline
}

polygon(x = c(x[1.], x[2.], x[2.], xX[1.]), ¥ = c(y[2.], Y[2.
y[1.]), density = 0.)

}

data(swiss)

# png(file="swiss.png", width=600,height=400)
plotacpclust(swiss[,1:5], 1, 3, hcut=48)

dev.off()

98 +

1, y[1.],
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Chapter 5

Appendix 1

plotmath Mathematical Annotationin R

Description

If the text argument to one of the text-drawing functiomsxt , mtext , axis ) in R is an expression, the
argument is interpreted as a mathematical expression analutiput will be formatted according to TeX-like
rules. Expressions can also be used for titles, subtitiésaand y-axis labels (but not for axis labelspersp
plots).

Details

A mathematical expression must obey the normal rules ofagyfar anyR expression, but it is interpreted
according to very different rules than for nornfakexpressions.

Itis possible to produce many different mathematical sylsilgenerate sub- or superscripts, produce fractions,
etc.

The output frondemo(plotmath)  includes several tables which show the available featurélsese tables,
the columns of grey text show samteexpressions, and the columns of black text show the reguititiput.

The available features are also described in the tablesvbelo

Syntax Meaning

X +y X plusy

X -y X minus'y

X*y juxtapose x and y
xly x forwardslashy
X %+% vy X plus or minus 'y
X %/% vy x divided by y

37
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X %*% y

X[i]

X2

paste(x, Yy, z)
sqrt(x)

sqrt(x, )

=y
<Yy
<=y
>y
>=y
%~~% vy
%=~% vy
%==% vy
X %prop% vy
plain(x)
bold(x)
italic(x)
bolditalic(x)
list(x, vy, 2)

X X X X X X X X X

cdots

Idots

X %subset% y
%subseteq% y
%notsubset% y
%supset% vy
%supseteq% y
%in% vy

X %notin% y
hat(x)

tilde(x)

dot(x)

ring(x)

bar(xy)
widehat(xy)
widetilde(xy)
%<->% y
%->% vy
%<-% y
%up% vy
%down% y
%<=>% vy
%=>% vy
%<=% vy
%dblup% y
%dbldown% vy

X X X X X

X X X X X X X X X X

plotmath

X timesy

X subscript i

X superscript 2

juxtapose x, y, and z
square root of x

yth root of x

X equals y

X is notequaltoy
xislessthany

x is less than or equal to y
X is greater than y

X is greater than or equalto y
X is approximately equal to y
x and y are congruent

x is defined as y

X is proportional to y

draw x in normal font
draw x in bold font

draw x in italic font

draw x in bolditalic font
comma-separated list
ellipsis (height varies)
ellipsis (vertically centred)
ellipsis (at baseline)

X is a proper subset of y

X is a subset of y

X is not a subset of y

X is a proper superset of y
X is a superset of y

X is an element of y

X is not an element of y

x with a circumflex

X with a tilde

X with a dot

X with aring

Xy with bar

xy with a wide circumflex
Xy with a wide tilde

x double-arrow y

X right-arrow y

X left-arrow y

X up-arrowy

x down-arrow y

X is equivalentto y

x implies y

y implies x

x double-up-arrowy

x double-down-arrowy



plotmath

alpha —omega
Alpha —Omega
infinity

partialdiff

32*degree

60*minute

30*second
displaystyle(x)
textstyle(x)
scriptstyle(x)
scriptscriptstyle(x)

X ~=Yy

x + phantom(0) + y
x + over(1, phantom(0))
frac(x, y)

over(x, y)

atop(x, )

sum(x[i], i==1, n)
prod(plain(P)(X==x), X)
integral(f(x)*dx, a, b)
union(A[i], i==1, n)
intersect(A[i], i==1, n)
lim(f(x), x %->% 0)
min(g(x), x > 0)
inf(S)

sup(S)

XNy + z

XNy + 2)

Ny + z}
group("(",list(a, b),"1"
bgroup("(",atop(x.y),")")
group(lceil, x, rceil)

References
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Greek symbols

uppercase Greek symbols

infinity symbol

partial differential symbol

32 degrees

60 minutes of angle

30 seconds of angle

draw x in normal size (extra spacing)
draw x in normal size

draw x in small size

draw x in very small size

put extra space between x and y
leave gap for "0", but don’t draw it
leave vertical gap for "0" (don’t draw)
X overy

X overy

x overy (no horizontal bar)

sum x[i] foriequals 1 ton

product of P(X=x) for all values of x
definite integral of f(x) wrt x

union of A[i] foriequals 1 ton
intersection of A[i]

limit of f(x) as x tends to 0
minimum of g(x) for x greater than O
infimum of S

supremum of S

normal operator precedence
visible grouping of operands
invisible grouping of operands
specify left and right delimiters

use scalable delimiters

special delimiters

Murrell, P. and Ihaka, R. (2000) An approach to providing meatatical annotation in plotdournal of Com-

putational and Graphical Satistics, 9, 582—-599.

See Also

demo(plotmath) ,axis , mtext ,text

Examples

x <- seq(-4, 4, len = 101)
y <- chind(sin(x), cos(x))
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plotmath

matplot(x, y, type = "I", xaxt = "n",

main = expression(paste(plain(sin) * phi, * and

plain(cos) * phi)),

ylab = expression("sin" * phi, "cos" * phi), # only 1st is take

xlab = expression(paste("Phase Angle ", phi)),

col.main = "blue")
axis(1, at = c(-pi, -pi/2, 0, pi/2, pi),

lab = expression(-pi, -pi/2, 0, pi/2, pi))

## How to combine "math" and numeric variables :

plot(1:10, type="n", xlab="", ylab="", main = "plot math & n umbers")
tt <- 1.23 ; mtext(substitute(hat(theta) == that, list(tha t= tt)))
for(i in 2:9)

text(i,i+1, substitute(list(xi,eta) == group("(",list( X,¥),")"),

list(x=i, y=i+1)))

plot(1:10, 1:10)
text(4, 9, expression(hat(beta) == (X"t * X)M-1} * Xt * y))

text(4, 8.4, "expression(hat(beta) == (Xt * X)M{-1} * X"t * )",
cex = .8)

text(4, 7, expression(bar(x) == sum(frac(x[i], n), i==1, n )

text(4, 6.4, "expression(bar(x) == sum(frac(x[i], n), i== 1, n))",
cex = .8)

text(8, 5, expression(paste(frac(l, sigma*sqrt(2*pi)), "
plain(e)Mfrac(-(x-mu)*2, 2*sigma”2)})),
cex = 1.2)
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