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Problem 1. In a laboratory, a sample of 30 specimens were weighed. The specimens
came from a population with mean=10 grams with standard deviation of 1 gram. Let x̄

denote the sample mean of the 30 weights. Find P (9.7 ≤ x̄ ≤ 10.3).
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The distribution of a measurement is unknown. Although, according the Central Limit
Theorem, the sample z-score will converge to N(0,1) only when the number of observations
goes to infinity, we will, nonetheless, rely on the Central Limit Theorem even when the
number of observations is only 30 and use the Normal distribution for the sample z-score.
In fact, we will go further and assume that, Xi ∼ N(10, 12). Therefore, E[x̄] = µ = 10
and var(x̄) = σ2

n
= 1

30
; hence x̄ ∼ N(10, 1

30
) and we will proceed to answer the question in

terms of z-scores.
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P (9.7 ≤ x̄ ≤ 10.3) = P

(
9.7− 10√

1
30

) ≤ x̄− 10√
1
30

≤ 10.3− 10√
1
30

)

= P

( −.3

.1825
≤ z ≤ .3

.1825

)

= P (−1.64 ≤ z ≤ 1.64)

= 1− 2P (z ≥ 1.64) = 1− 2(.051)

= .898

The answer to the problem is that the probability that the average weight of any sample
of 30 specimens from that laboratory will lie within the interval, (9.7, 10.3), is .898. On
the other hand, the probability that the weight of a particular specimen will lie in the
interval, (9.7, 10.3), is not the same .898. That can be easily demonstrated by the following
equivalences. As before, it is assumed that Xi ∼ N(10, 12), this time n=1.

P (9.7 ≤ xi ≤ 10.3) = P

(
9.7− 10√

1
) ≤ x̄− 10√

1
≤ 10.3− 10√

1

)

= P

(
− .3 ≤ z ≤ .3

)

= 2(.11791)

= .236

The observation that the average weight of numerous specimens and the weight of a
particular specimen following different distributions raises a natural question: What would
be the right interval in which the weight of a particular specimen will lie with a probability
of .898? Consider the interval, (8.36, 11.64). Then

P (8.36 ≤ xi ≤ 11.64) = P

(
8.36− 10√

1
) ≤ x̄− 10√

1
≤ 11.64− 10√

1

)

= P

(
− 1.64 ≤ z ≤ 1.64

)

= 2(.44950)

= .899

The probability that x̄ is in (9.7, 10.3) is .898, and the probability that xi is in (8.36, 11.64)
is .899. The precision of an estimate like the average weight is indicated by the width of
an interval which in a certain sense brackets the estimate with a specified probability.
That such an interval can be used to gauge the precision of an estimate provides a way to
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compare one estimate against another. The estimate with the shortest interval is deemed
to be the best one; therefore, the sample average must be a more precise estimate than a
particular measurement and that agrees with our intuition. The method of constructing
these intervals for an estimate forms the subject of confidence intervals.

1 z Quantile

More often than not, finding the inverse of a probability is required for doing common
statistical problems than computing a probability. The inverse of a probability is that z
which will produce the given probability.
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For example, let z ∼ N(0, 1); it is desired to find c such that P (z ≤ c) = .84134. Given the
probability to be .84134, what number, c, produced it? The table of probabilities for the
Standard Normal distribution found in Appendix 3 gives the area under the curve from
0 to c so that the remainder of .84134 lying to the right of 0 is .34134 which was found
by having taken into account the .5 which lies to the left of 0. The number which comes
closest to .34134 in the body of the table of probabilities is co-incidentally .34134, and it
corresponds to z=1. The answer to the question is: c=1. A check of the answer verifies that
P (z ≤ 1) = .8413. This process of finding the inverse probability falls under the theory of
inverse functions.
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Definition 1. A function is a mapping from set A into set B such that if f(a) 6= f(b)
then a 6= b.

The definition is saying that, a function is not supposed to map one point to different
numbers, although it is certainly permissible for a function to map two or more different
points to the same image. Those functions which produce a one-to-one correspondence
between two sets are special. If a function, f, is one-to-one then it has an inverse which
is commonly denoted by f−1. Because the cumulative probability function, P (X ≤ c), is
a function which is one-to-one, it has an inverse. Since our interest will usually focus on
the Normal distribution or a distribution that is based on it, let us study the inverse of
the cumulative distribution of the Normal distribution. If z ∼ N(0, 1), then, in terms of

integral calculus, the area under the curve up to c is: P (X ≤ c) = 1√
2π

c∫
−∞

e−
t2

2 dt. P (X ≤ c)

is a function in c as can be seen in this equation. A picture of the cumulative distribution
of N(0,1) is shown on the right while its probability density function with which we are
intimately familiar is on the left.
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The cumulative distribution function (CDF) expresses the area under the probability
density function from −∞ up to c. If c=1, then by using the probability table for N(0,1),
P (z ≤ 1) = .8413 which is the area under the probability density function from −∞ to
1. By referring to the cumulative distribution function of N(0,1) shown above, when c=1,
then the function gives the answer: .8413. Every point on the CDF as shown on the right
corresponds to the area under the curve given on the left. The picture of the cumulative
distribution function of N(0,1), the area under the probability density function shown on
the left, and the table of probabilities of N(0,1) given in Appendix 3 are actually the
same. The picture of the CDF makes it more obvious than the table that the cumulative
distribution function is a one-to-one function; consequently, it has an inverse. A graph of
the inverse function of the Normal CDF is shown below:
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To find a number, c, such that P (z ≤ c) = .8413, the graph of the inverse cumulative
distribution function shows that c=1. The graph of the inverse cumulative distribution
function is the same as the cumulative distribution function but rotated 90o and flipped
over along the x axis. Consequently, the graph of the inverse function does not provide
any more information than the graph of the cumulative distribution function itself. Even
though the concept of an inverse function is essential in deriving confidence intervals, its
picture is ignored in practice. For the purpose of finding probabilities and for finding the
inverse of the probabilities, the table of probabilities for N(0,1) is sufficient.

To find that c which produces a specified probability, we search in the body of the
table for the probability. However, the table is constructed to provide the area between 0
and c. In order to utilize the table, it is necessary then to search for the remainder of the
area lying to the right of 0. The area to the left of 0 is .5, consequently, we subtract .5
from the specified probability to give the remainder of the area to the right of 0 and that
is the value we seek in the body of the table.

Example 1. 1. Find c such that P (z ≤ c) = .5 = .5 + 0 → c = 0.

2. Find c such that P (z ≤ c) = .69146 = .5 + .19146 → c = .5

3. Find c such that P (X ≤ c) = .9750 = .5 + .4750 → c = 1.96. Check P (z ≤ 1.96) =
.5 + .4750 = .9750.

It is tedious to keep writing: Find c such that P (X < c) = .9750, for instance. A
shorthand notation has been developed to use in its place.

Definition 2. If z ∼ N(0, 1), denote by zα that number such that P (X ≤ zα) = 1−α.
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Example 2. Let α = .08; find z.08. By definition, P (X ≤ z.08) = 1 − .08 = .92 =
.5+ .42 → z.08 = 1.41. A check of the answer, P (z ≤ 1.41) = .92, verifies that it is correct.

Simple mathematical notation like zα succinctly facilitates the incorporation of the
inverse of a cumulative distribution into statistical formulas. To emphasis the utility of
the notation, zα, the previous three examples will be done again in terms of zα.

1. P (z ≤ c) = .5 = 1− .5 = P (z ≤ z.5) → c = z.5 = 0.

2. P (z ≤ c) = .6915 = 1− .3085 = P (z ≤ z.3085) → c = z.3085 = .5.

3. P (z ≤ c) = .9750 = 1− .025 = P (z ≤ z.025) → c = z.025 = 1.96.

An alternative and usually more convenient definition of zα is given by the following
theorem.

Theorem 1. P (z ≥ zα) = α.

Proof. P (z ≥ zα) = 1− P (z ≤ zα) = 1− (1− α) = α. �

One can think of zα as that number such that the area under the curve to the right of
it is equal to α and that idea is shown schematically in Figure 1.

Example 3. Find z.025. P (z ≥ z.025) = .025 → P (z ≤ z.025) = .975 = .5 + .475 →
z.025 = 1.96. A check of the answer, P (z ≥ 1.96) = .025, verifies answer.
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Definition 3. zα is called a quantile of the Standard Normal distribution.

The sample mean, x̄ =

∑

i∈S
xi

n
, is a random variable. As such, it changes depending

on the luck of drawing the sample. From the Central Limit Theorem, the graph which
approximates the distribution of x̄ indicates that x̄ spends most of its time in and around
the central peak: that is, near its expected value. A question worth pondering concerns
the idea of finding two numbers about the central peak such that the resulting interval
will capture, so to speak, x̄ with a certain probability of 1− α.

Problem 2. Find two numbers, a and b, such that P (a ≤ x̄ ≤ b) = 1− α.

Unfortunately, there is no unique answer to this problem because there are infinite
number of possible a’s and b’s which will do the job as the following two graphs suggest.
In both, the areas under the curves are the same but their end points are obviously
different.
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It is necessary, therefore, to impose another constraint in order to obtain a unique lower
limit and a unique upper limit of the interval. This is done by taking advantage of the
symmetry of the Normal distribution by choosing a and b to be symmetric about x̄ such
that P (a ≤ x̄ ≤ b) = 1− α. The consequence of requiring a and b to be placed symmetri-
cally about x̄ along with the symmetry of the Normal distribution assures us by means of
differential calculus that the length of the resulting interval will be a minimum. It will be
the shortest interval which will bracket x̄ with the specified probability, 1− α. The lower
and upper limits of this interval is given by the next theorem.

Theorem 2. If Xi are i.i.d N(µ, σ2), x̄ = X1+···+Xn

n
, P (a ≤ x̄ ≤ b) = 1− α, and a and

b are symmetric about x̄, then

1. a = µ− σ√
n
zα

2
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2. b = µ+ σ√
n
zα

2

Proof. Let a and b be two numbers symmetrically placed about x̄ such that P (a ≤
x̄ ≤ b) = 1 − α. Subtracting the expected value of x̄ from both sides and dividing by the
standard deviation of x̄ produces:

P

(
a− µ

σ√
n

≤ x̄− µ
σ√
n

≤ b− µ
σ√
n

)
= 1− α

P

(
a− µ

σ√
n

≤ z ≤ b− µ
σ√
n

)
= 1− α

 
− zα

2

 
zα

2

1 − α α
2

α
2

0

Symmetric about x̄ means that

(
a−µ
σ√
n

)
= −

(
b−µ
σ√
n

)
; consequently,

P

(
−
(
b− µ

σ√
n

)
≤ z ≤ b− µ

σ√
n

)
= 1− α

P
(
−zα

2
≤ z ≤ zα

2

)
= 1− α → b− µ

σ√
n

= zα
2
→ b = µ+

σ√
n
zα

2

and since

(
a−µ
σ√
n

)
= −zα

2
→ a = µ− σ√

n
zα

2

Therefore, P (µ− σ√
n
zα

2
≤ x̄ ≤ µ+ σ√

n
zα

2
) = 1− α. �

Example 4. Suppose a sample consists of 25 elements where Xi ∼ N(10, 9).

1. Find two numbers, a and b, which are symmetric about x̄ such that the area under
the curve lying between them is 95%.
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(a) 95%=100(1-.05)% → α = .05, hence α
2
= .025.

(b) zα
2
= z.025 = 1.96.

(c) a = µ− σ√
n
zα

2
= 10− 3

5
(1.96) = 8.825

b = µ+ σ√
n
zα

2
= 10 + 3

5
(1.96) = 11.176

The meaning of these two numbers must be viewed in the context of performing many
replicated experiments. If the same experiment is performed 100 times, and they are
done independently of each other, then associated with each sample, i, there is an
x̄i. On the average, 95 of the x̄i’s will lie between 8.825 and 11.176. Even before
any experimentation is conducted, the anticipation that 95 percent of the x̄i’s will
lie between 8.825 and 11.176 is valid. The ability to predict with a certain level of
confidence that random variables will likely be found within an interval of prescribed
length makes these two numbers, a and b, very useful.

2. Do the same experiment except that the area under the curve lying between a and b
is 90%.

(a) 90% = 100(1− .10)% → α = .10, hence α
2
= .05.

(b) z.05 = 1.64.

(c) a = µ− σ√
n
zα

2
= 10− 3

5
(1.64) = 9.016

b = µ+ σ√
n
zα

2
= 10 + 3

5
(1.64) = 10.984

3. Again, but with an area of 80%.

(a) 80% = 100(1− .20)% → α = .20, hence α
2
= .10.

(b) z.10 = 1.28.

(c) a = µ− σ√
n
zα

2
= 10− 3

5
(1.28) = 9.232

b = µ+ σ√
n
zα

2
= 10 + 3

5
(1.28) = 10.768

Each section of the preceding example only employs a different α. As α changes from
.05 to .20, the distance between a and b decreases. It stands to reason that the more
stringent the requirement of capturing x̄ within brackets, the wider the spacing of the
brackets must become, as the following diagram shows.
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2 Confidence Interval when σ2 Is Known

Suppose that the variance is known but µ is unknown, specifically Xi ∼ N(µ, 25). In this
case, an estimate of µ can, nevertheless, be obtained from the experimental data but at
the sacrifice of giving up some precision in the estimate as we shall soon see. From our
discussions of estimation and of sampling distributions which culminated in Theorem 31,
we can assert that µ̂ = x̄ and var(x̄) = σ2

n
. Fortunately, in this present case, σ2 and n are

given, even though µ is unknown.
It was already shown in Theorem 2 that P (µ − σ√

n
zα

2
≤ x̄ ≤ µ + σ√

n
zα

2
) = 1 − α. By

using simple algebraic manipulations of subtracting x̄ and µ from all sides and multiplying
all sides by -1, this expression can be rearranged so that:

P (−x̄− σ√
n
zα

2
≤ −µ ≤ −x̄+

σ√
n
zα

2
) = P (x̄− σ√

n
zα

2
≤ µ ≤ x̄+

σ√
n
zα

2
) = 1− α

The two numbers which straddle µ define the lower and upper limits of a confidence
interval.

Definition 4. The interval (x̄− σ√
n
zα

2
, x̄+ σ√

n
zα

2
) is called the 100(1-α)% confidence

interval of µ. Confidence interval is commonly abbreviated by CI.

The concept of a confidence interval was published in 1934 by Jerzy Neyman. He was
also responsible for creating a rigorous method of testing a statistical hypothesis which
will constitute the next chapter. The importance of the concept of confidence intervals
cannot be overemphasized. It is the most important concept in this course, and it lies at
the foundation of making inferences about a population from a sample.

1

Theorem 3. If X1, X2, . . . , Xn are i.i.d. each with mean µ and variance σ2, and x̄ = X1+···+Xn

n
,

then

E[x̄] = µ and var(x̄) =
σ2

n
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Example 5. If it is assumed that xi ∼ N(µ, 25) during the performance of an ex-
periment in which 100 samples are drawn from a population with population mean µ and
population variance 25, then the construction of a 95% confidence interval follows a simple
recipe. Suppose the sample mean is: x̄ =85.

1. 95%=100(1-α)% → α = .05, hence α
2
= .025.

2. z.025 = 1.96.

3. lower limit, a=x̄− σ√
n
zα

2
= 85−

√
25√
100

1.96 = 84.02

upper limit, b=x̄+ σ√
n
zα

2
= 85 +

√
25√
100

1.96 = 85.98

4. 95% CI of µ =(84.02,85.98).

What does this mean? If 100 experiments are performed, 95 of the resulting confidence
intervals will straddle the population mean. This is a profound statement to make because
it implies that, about the population mean, that unknown quantity which is the cause
of doing the experiment in the first place, an interval can be placed with a certain pre-
scribed probability, 1 − α. It is impossible to tell if the confidence interval does indeed
cover the population mean, yet, if 100 independent and identical experiments were to
be performed, on the average, 95 confidence intervals will cover the population mean. A
confidence interval is the best bet of a pragmatist for locating the mean of the population.

3 Confidence Interval when σ2 Is Unknown

In practice, both the population mean and the population variance are unknown other-
wise there is no purpose for conducting an experiment. An experiment is designed and
conducted for the sole purpose of estimating a certain attribute of the population. The
most commonly sought after characteristics of a population are the population mean and
the population variance. Even more disconcerting than the lack of knowledge of µ and σ2,
is not knowing how Xi is distributed which in turn makes the distributions of the sample
mean and the sample variance unknown. Nevertheless, if the sampling is done randomly
and independence of taking measurements is guaranteed, then the conditions are met to
invoke the Central Limit Theorem. Then by means of the Central Limit Theorem, the
Standard Normal distribution can be used to approximate the distribution of the sample
z-score. As more observations are made, the better the sample z-score, x̄−µ

s√
n

approximates

N(0,1).
Before addressing the general case in which the distribution of X is unknown, the

simpler one in which it is asserted that Xi ∼ N(µ, σ2) will be discussed. In this case,
µ and σ2 are not known but we do know that Xi ∼ N(µ, σ2). Because µ and σ2 are
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unknown, we are forced to estimate: µ by x̄ and σ2 by s2. In accordance with the method
of constructing confidence intervals, the same procedure will be used as before; that is,
two numbers, a and b, will be computed such that P (a ≤ x̄ ≤ b) = 1−α. Mathematically,
the two numbers must be symmetrically placed about x̄ such that

P (a ≤ x̄ ≤ b) = 1− α

P

(
a− µ

s√
n

≤ x̄− µ
s√
n

≤ b− µ
s√
n

)
= 1− α

William Sealy Gosset
1876-1934

However, x̄−µ
s√
n

≁ N(0, 1), even though x̄−µ
σ√
n

∼ N(0, 1). The difference between the two

lies in the denominator. In the z-score, σ is a constant, while in the sample z-score, s is
a random variable. Although x̄−µ

s√
n

is the sample z-score, and it converges to the Standard

Normal via the Central Limit Theorem, it is not distributed as a N(0,1). Instead, it follows
a different probability distribution. In the special case when Xi ∼ N(µ, σ2), it is not
necessary to approximate the distribution of the sample z-score by the Central Limit
Theorem because the assumption that Xi ∼ N(µ, σ2) permits the derivation of an exact
distribution for x̄−µ

s√
n

. It is called the Student’s t distribution with n-1 degrees of freedom.

This distribution was derived by William Sealy Gosset around 1908. He showed that
x̄−µ

s√
n

∼ tn−1. The subscript, n-1, is called the degrees of freedom.

Recall that the formula for the sample variance is: s2 =

∑

i∈S
(xi−x̄)

n−1
. The n-1 appears in

the denominator of s2 to make it an unbiased estimator of σ2; it is the same value for the
degrees of freedom for the t distribution. A picture of two versions of the t distribution for
2 and 10 degrees of freedom is given respectively by the dotted and dashed curves in Figure
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2. The N(0,1) is represented by a solid curve to which the t distribution converges as the
degrees of freedom increase to infinity. That bell shaped feature causes the t distribution
to bear a close resemblance to the Normal distribution; in fact, as the degrees of freedom
approaches∞, the t distribution will converge to the N(0,1) distribution. The t distribution
is also symmetric about zero like the Standard Normal distribution, but the t distribution
is flatter and its tails are heavier than the Normal distribution. The symmetry about zero
is a useful feature for by imposing the same constraint on a and b to be symmetric about
the mean, the derivation of a confidence interval becomes possible.

Theorem 4. If Xi are i.i.d. N(µ, σ2), then

P (x̄− s√
n
tn−1,α

2
≤ µ ≤ x̄+

s√
n
tn−1,α

2
) = 1− α.

Definition 5. The interval (x̄ − s√
n
tn−1,α

2
, x̄ + s√

n
tn−1,α

2
) is called the 100(1-α)%

confidence interval of µ where the Xi’s are i.i.d. Normal with mean µ and variance σ2.

Definition 6. tn,α is called a quantile of the Student’s t distribution, tn.

By being a quantile, it means that P (tn ≤ tn,α) = 1−α or equivalently, P (tn > tn,α) =
α.

The t distribution has a rather colorful history. It is called Student’s t because the
Guinness Brewery where Gosset worked as a statistician did not permit its employees
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to publish under their real names. Although the brewery, the same one which publishes
the Guinness Book of World Records, encouraged its employees to publish in professional
journals, the company was fearful that a reader of an article could infer the substance
of some trade secret of the company. Instead, the Guinness Brewery encouraged the use
of pseudonyms. Gosset chose the name Student. Only a select few people knew the true
identity of Student. The identity of Student was not revealed until the 1930’s when the
restriction was finally lifted by Guinness, and it was safe to tell his real name.

Unlike the property of a Normal random variable which can be transformed into the
Standard Normal distribution by means of the z-score, a random variable which follows
a Student’s t distribution cannot be so transformed to a standard distribution. There is
no standard t distribution. For each degree of freedom there is a distinct t distribution.
There must be a separate table of probabilities for each degree of freedom resulting in an
unpleasant prospect of publishing a hundred page appendix in a statistics book only to
accommodate the tables for the t distribution alone.

About the only time a t distribution is used is for getting quantiles for constructing
confidence intervals and testing hypotheses. By convention, due to a feud between Karl
Pearson and Ronald Fisher, two very prominent fathers of modern statistics, quantiles for
α= .20, .10, .05, .025, .01, and .001 are widely used. With ready access to computers,
this convention is giving way to the use of any quantile and the prospect of dispensing
with tables all together might seem an imminent reality. Nonetheless, oftentimes it is more
convenient to open a book, inspect a table, and go on with your work instead of anxiously
waiting for a computer to warm-up, login, and to start a statistical software package just
to get a quantile. The convention of using only a few α’s, reduces a hundred tables to
one table. This table which appears in Appendix 3 consists of six columns and about one
hundred rows, one for each degree of freedom. Obtaining a t quantile is easy; for example,
t24,.025 = 2.064. It is found by following row ν = 24 until column t.025 is reached.

Example 6. Suppose a sample consists of 25 elements for which Xi ∼ N(µ, σ2).

Furthermore, it was found that µ̂ = x̄ = 10 and that σ̂2 = s2 = 9.

1. Find 95% confidence interval for µ.

(a) 95%=100(1-α)% → α = .05, hence α
2
= .025 and n=25; therefore, n-1=24.

(b) tn−1,α
2
= t24,.025 = 2.064.

(c) lower limit,a = x̄− s√
n
tn−1,α

2
= 10− 3

5
(2.064) = 8.7616.

upper limit, b=x̄+ s√
n
tn−1,α

2
= 10 + 3

5
(2.064) = 11.2384.

(d) 95% CI of µ =(8.7616,11.2384).

2. Continuation of the previous example but need to find 90% CI.
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(a) 90%=100(1-α) → α = .10, hence α
2
= .05 and as before n-1=24.

(b) tn−1,α
2
= t24,.05 = 1.711.

(c) lower limit,a = x̄− s√
n
tn−1,α

2
= 10− 3

5
(1.711) = 8.9734.

upper limit, b=x̄+ s√
n
tn−1,α

2
= 10 + 3

5
(1.711) = 11.0266.

(d) 90% CI of µ =(8.9734,11.0266).

3. Final continuation of the previous example but need to find 80% CI.

(a) 80%=100(1-α) → α = .20 hence α
2
= .10 and as before n-1=24.

(b) tn−1,α
2
= t24,.10 = 1.318.

(c) lower limit,a = x̄− s√
n
tn−1,α

2
= 10− 3

5
(1.318) = 9.2092.

upper limit, b=x̄+ s√
n
tn−1,α

2
= 10 + 3

5
(1.318) = 10.7908.

(d) 80% CI of µ =(9.2092,10.7908).

The same situation of finding confidence intervals when 25 elements are drawn under
three different levels of significance, α, is presented by the last three examples. The only
difference between them is the value of α. A similar comparison was performed earlier in
Example 4 but in the case when σ2 was known. Between these two sets of examples, a
combination of six confidence intervals as shown in the following table offers an opportunity
to observe the consequences of knowing and not knowing the true value of σ2 on the length
of a confidence interval and the effects of imposing more or less stringent criteria in the
specification of α for bracketing the population mean.

100(1− α)% σ2 Known σ2 Unknown

95% (8.825,11.176) (8.7616,11.2384)

90% (9.016,10.984) (8.9734,11.0266)

80% (9.232,10.768) (9.2092,10.7908)

The two confidence intervals corresponding to α = .05 are shown superimposed on
each other in the following diagram.

10 121198

(( ))

z tt
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The confidence interval which is derived from the experiment in which σ2 is known relies
on the z quantile, and it is shorter than the confidence interval which is associated with an
unknown σ2. In the latter case, the construction of the confidence interval had to extract
additional information from the pool of data in order to estimate σ2 at the expense of
providing a better estimate of µ. As a consequence, the estimate of µ, being less certain,
requires a wider confidence interval to bracket it.

Example 7. Let S = {5 4 3 6 5 4.5}. Find 95% CI for µ when it is given that x̄ = 4.5833
s2 = 1.0417.

1. α = .05 → α
2
= .025 and n-1=5.

2. tn−1,α
2
= t5,.025 = 2.571.

3. lower limit,a = x̄− s√
n
tn−1,α

2
= 4.5833−

√
1.0417√

6
2.571 = 3.5120.

upper limit, b=x̄+ s√
n
tn−1,α

2
= 4.5833 +

√
1.0417√

6
2.571 = 5.6546.

4. 95% CI about µ is (3.5120,5.6546).

Drawing a picture of the data is always the first thing to do when analyzing data.
Although it is not normally done, the 95% CI is also drawn in the picture to illustrate
its relation with the data. Whether it contains the population mean cannot be answered.
At best, we can surmise that this might be one of the 95% confidence intervals that does
cover the population mean. Besides having been given only the raw data, if a description of
the context of the problem had also been given, then it would have helped in interpreting
the meaning of a confidence interval. Suppose it was mentioned that this last set of data
contained the geographic location of undeniable metallic objects like Spanish Doubloons
of a sunken treasure in the ocean for which you are searching. The readings of magnetic
sensors help to reduce the search from the entire ocean to a feasible area to look. The best
place to dive into the water in search of treasure is in the middle of the confidence interval.
The confidence interval marks our best guess of the location of the population mean.

( )

5.75683.4098

* * *

*

**

1 2 3 4 5 6 7

The following table summarizes the question of when to use zα
2
or to use tn−1,α

2
in

constructing a confidence interval.
Obviously, µ− σ√

n
zα

2
is not a random variable, but x̄− s√

n
tn−1,α

2
is a random variable.

It is the lower limit of a confidence interval. The upper limit is also a random variable. The

17



When σ2 is Known When σ2 is Unknown

Lower Limit a = x̄− σ√
n
zα

2
a = x̄− s√

n
tn−1,α

2

Upper Limit b = x̄+ σ√
n
zα

2
b = x̄+ s√

n
tn−1,α

2

end points of a confidence interval are random variables. They move around depending
on the luck of the draw when sampling. Since x̄− s√

n
tn−1,α

2
and x̄+ s√

n
tn−1,α

2
are random

variables, they have probabilities distributions. Consider then the problem of finding P (x̄−
s√
n
tn−1,α

2
≤ µ ≤ x̄ + s√

n
tn−1,α

2
). The usual strategy of finding the z-score will lead along

the following series of steps to the answer.

P (x̄− s√
n
tn−1,α

2
≤ µ ≤ x̄+

s√
n
tn−1,α

2
) =

P (x̄− s√
n
tn−1,α

2
− x̄ ≤ µ− x̄ ≤ x̄+

s√
n
tn−1,α

2
− x̄) =

P (− s√
n
tn−1,α

2
≤ µ− x̄ ≤ s√

n
tn−1,α

2
) =

P (−tn−1,α
2
≤ µ− x̄

s√
n

≤ tn−1,α
2
) =

P (−tn−1,α
2
≤ tn−1 ≤ tn−1,α

2
) = 1− α

 
− tn−1,α2

 
tn−1,α2

0

1 − α α
2

α
2

The probability that a confidence interval covers the population mean is 1 − α. This
statement can be written in two informative ways: the probability that µ is in the confi-

18



dence interval

P (µ ∈ (x̄− s√
n
tn−1,α

2
, x̄+

s√
n
tn−1,α

2
)) = 1− α

and the probability that the confidence interval covers µ

P ((x̄− s√
n
tn−1,α

2
, x̄+

s√
n
tn−1,α

2
) ∋ µ) = 1− α

At this point, we have reached a philosophical dilemma. The endpoints, (x̄− s√
n
tn−1,α

2
, x̄+

s√
n
tn−1,α

2
), of a confidence interval are random variables. When values of experimental data

are substituted into the formula as was done in Example 7, a realized confidence interval,
(3.5120, 5.6546) is produced. Its endpoints are constants; consequently, it is not a confi-
dence interval and P ((3.5120, 5.6546) ∋ µ) makes no sense because it is indeterminable. It
is obvious that P ((3.5120, 5.6546) ∋ 0) = 0 and P ((3.5120, 5.6546) ∋ 4) = 1, but with µ

unknown, it is impossible to tell what P ((3.5120, 5.6546) ∋ µ) is. When values of exper-
imental data are substituted into the formula for a confidence interval, we immediately
leave the world of probability; therefore, it is wrong to frame a realized confidence interval
in terms of probability and to say, for instance, that (3.5120, 5.6546) covers the mean of
the population with 95 percent probability or to say that the mean of the population is
contained in (3.5120, 5.6546) with a probability of 95 percent. On the other hand, it is cor-
rect to say that (x̄− s√

n
tn−1,α

2
, x̄+ s√

n
tn−1,α

2
) covers the population mean with 100(1−α)%

probability because x̄ ± s√
n
tn−1,α

2
are random variables as opposed to 3.5120 and 5.6546

which are constants. The answer to this philosophical dilemma relies on the recognition
that (3.5120, 5.6546) is a realized value of a confidence interval. It may or may not cover
the mean of the population, and we are left wondering which situation is correct.
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If 100 independent and identical experiments are conducted from which 100 realized con-
fidence intervals are constructed, then the theory of confidence intervals says that, on the
average, 95 of those intervals will contain the population mean. It is impossible to identify
which one of them does contain the mean and which one does not contain the mean.

To illustrate this important concept, a series of 20 computer simulated experiments
were conducted in which the population mean is known to be zero. In each experiment,
30 random numbers were generated by means of a computer from a N(0,1) distribution.
The 20 resulting confidence intervals about the mean are stacked side by side each other
as shown in the drawing above. If the line marking the location of the population mean
was not present as is the case in an actual experiment, it would be impossible to tell which
confidence intervals contain µ = 0. In the contrived experiment presented here, the theory
of confidences intervals is confirmed for we see that 19/20=95% of the realized confidence
intervals do contain µ = 0.

Statisticians almost never say realized confidence interval except in philosophical dis-
cussions. It should be kept in mind that confidence interval and a realized confidence
interval are two different things. For the pragmatist, the philosophical distinction between
them is overlooked. In his view, that interval which is produced from experimental data
is his best bet for the location of the population mean.

Another way to look at 95% confidence intervals is to imagine a stack of 100 confidence
intervals on top of each other like a stack of pancakes. The resulting histogram will look

like a Normal distribution with mean x̄ and standard deviation s = (b−a)
√
n

2tn−1, α
2

.

If the Uniform distribution is the simplest one among those for continuous random
variables and if the Normal distribution is the nicest of all distributions, then the Student’s
t distribution is one of the the simplest of the complex distributions. The formula of its
probability density function with n degrees of freedom is:

f(x) =
Γ(n+1

2
)

√
πnΓ(n

2
)(1 + x2

n
)
n+1

2

where Γ(z) =
∞∫
0

tz−1e−tdt.

The gamma function, Γ(z), is a celebrated example of Leonhard Euler’s ingenuity. He
generalized the factorial function, N !, to allow in its domain not only whole numbers but
all numbers except negative integers and zero. It is very easy to evaluate 3! = 3 · 2 · 1 and
4! = 4 ·3 ·2 ·1 and it seems as if there should be a factorial of a value between them like 31

2
!.

In fact, there is such a value. By means of the gamma function which Euler discovered,
N ! = Γ(N + 1) so that it is possible to evaluate, for instance (−1

2
)! = Γ(1

2
) =

√
π,

another remarkable equivalence involving π. Since 3!=6 and 4!=24, it would seem that
6 ≤ 31

2
! ≤ 24. Indeed, by using the definition of factorial, we can write 31

2
! = 7

2
! =

7
2
5
2
3
2
1
2
(−1

2
)! = 105

16

√
π = 11.63173 . . ..
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In conclusion of this discussion of the Student’s t distribution, if T ∼ tn, then E[T]=0
and var(T ) = n

n−2
. Because E[T]=0, the t distribution technically should be called the

central t distribution. There is a large family of t distributions for which E[T ] 6= 0; they
are called non-central t distributions, and they are used in advanced statistics.

Student’s t Tn

E[Tn] = 0

var(Tn) =
n

n−2
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Cumulative Probabilities for a N(0,1) Distribution: Φ(z)− .5

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.00000 0.00399 0.00798 0.01197 0.01595 0.01994 0.02392 0.0279 0.03188 0.03586

0.1 0.03983 0.04380 0.04776 0.05172 0.05567 0.05962 0.06356 0.06749 0.07142 0.07535

0.2 0.07926 0.08317 0.08706 0.09095 0.09483 0.09871 0.10257 0.10642 0.11026 0.11409

0.3 0.11791 0.12172 0.12552 0.12930 0.13307 0.13683 0.14058 0.14431 0.14803 0.15173

0.4 0.15542 0.15910 0.16276 0.16640 0.17003 0.17364 0.17724 0.18082 0.18439 0.18793

0.5 0.19146 0.19497 0.19847 0.20194 0.20540 0.20884 0.21226 0.21566 0.21904 0.22240

0.6 0.22575 0.22907 0.23237 0.23565 0.23891 0.24215 0.24537 0.24857 0.25175 0.25490

0.7 0.25804 0.26115 0.26424 0.26730 0.27035 0.27337 0.27637 0.27935 0.28230 0.28524

0.8 0.28814 0.29103 0.29389 0.29673 0.29955 0.30234 0.30511 0.30785 0.31057 0.31327

0.9 0.31594 0.31859 0.32121 0.32381 0.32639 0.32894 0.33147 0.33398 0.33646 0.33891

1.0 0.34134 0.34375 0.34614 0.34849 0.35083 0.35314 0.35543 0.35769 0.35993 0.36214

1.1 0.36433 0.36650 0.36864 0.37076 0.37286 0.37493 0.37698 0.37900 0.38100 0.38298

1.2 0.38493 0.38686 0.38877 0.39065 0.39251 0.39435 0.39617 0.39796 0.39973 0.40147

1.3 0.40320 0.40490 0.40658 0.40824 0.40988 0.41149 0.41309 0.41466 0.41621 0.41774

1.4 0.41924 0.42073 0.42220 0.42364 0.42507 0.42647 0.42785 0.42922 0.43056 0.43189

1.5 0.43319 0.43448 0.43574 0.43699 0.43822 0.43943 0.44062 0.44179 0.44295 0.44408

1.6 0.44520 0.44630 0.44738 0.44845 0.44950 0.45053 0.45154 0.45254 0.45352 0.45449

1.7 0.45543 0.45637 0.45728 0.45818 0.45907 0.45994 0.46080 0.46164 0.46246 0.46327

1.8 0.46407 0.46485 0.46562 0.46638 0.46712 0.46784 0.46856 0.46926 0.46995 0.47062

1.9 0.47128 0.47193 0.47257 0.47320 0.47381 0.47441 0.47500 0.47558 0.47615 0.47670

2.0 0.47725 0.47778 0.47831 0.47882 0.47932 0.47982 0.48030 0.48077 0.48124 0.48169

2.1 0.48214 0.48257 0.48300 0.48341 0.48382 0.48422 0.48461 0.48500 0.48537 0.48574

2.2 0.48610 0.48645 0.48679 0.48713 0.48745 0.48778 0.48809 0.48840 0.48870 0.48899

2.3 0.48928 0.48956 0.48983 0.49010 0.49036 0.49061 0.49086 0.49111 0.49134 0.49158

2.4 0.49180 0.49202 0.49224 0.49245 0.49266 0.49286 0.49305 0.49324 0.49343 0.49361

2.5 0.49379 0.49396 0.49413 0.49430 0.49446 0.49461 0.49477 0.49492 0.49506 0.49520

2.6 0.49534 0.49547 0.49560 0.49573 0.49585 0.49598 0.49609 0.49621 0.49632 0.49643

2.7 0.49653 0.49664 0.49674 0.49683 0.49693 0.49702 0.49711 0.49720 0.49728 0.49736

2.8 0.49744 0.49752 0.49760 0.49767 0.49774 0.49781 0.49788 0.49795 0.49801 0.49807

2.9 0.49813 0.49819 0.49825 0.49831 0.49836 0.49841 0.49846 0.49851 0.49856 0.49861

3.0 0.49865 0.49869 0.49874 0.49878 0.49882 0.49886 0.49889 0.49893 0.49896 0.49900
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Quantiles for a Student’s t Distribution
ν tν,.20 tν,.15 tν,.10 tν,.05 tν,.025 tν,.01 tν,005

1 1.37638 1.96261 3.07768 6.31375 12.7062 31.82052 63.65674

2 1.06066 1.38621 1.88562 2.91999 4.30265 6.964560 9.92484

3 0.97847 1.24978 1.63775 2.35338 3.18245 4.54070 5.84091

4 0.94096 1.18957 1.53321 2.13185 2.77645 3.74695 4.60410

5 0.91954 1.15577 1.47588 2.01505 2.57058 3.36493 4.03216

6 0.90570 1.13416 1.43976 1.94318 2.44691 3.14267 3.70743

7 0.89603 1.11916 1.41492 1.89458 2.36462 2.99795 3.49948

8 0.88889 1.10815 1.39682 1.85955 2.30600 2.89646 3.35539

9 0.88340 1.09972 1.38303 1.83311 2.26216 2.82144 3.24984

10 0.87906 1.09306 1.37218 1.81246 2.22814 2.76377 3.16927

11 0.87553 1.08767 1.36343 1.79588 2.20099 2.71808 3.10581

12 0.87261 1.08321 1.35622 1.78229 2.17881 2.68100 3.05454

13 0.87015 1.07947 1.35017 1.77093 2.16037 2.65031 3.01228

14 0.86805 1.07628 1.34503 1.76131 2.14479 2.62449 2.97684

15 0.86624 1.07353 1.34061 1.75305 2.13145 2.60248 2.94671

16 0.86467 1.07114 1.33676 1.74588 2.11991 2.58349 2.92078

17 0.86328 1.06903 1.33338 1.73961 2.10982 2.56693 2.89823

18 0.86205 1.06717 1.33039 1.73406 2.10092 2.55238 2.87844

19 0.86095 1.06551 1.32773 1.72913 2.09302 2.53948 2.86093

20 0.85996 1.06402 1.32534 1.72472 2.08596 2.52798 2.84534

21 0.85907 1.06267 1.32319 1.72074 2.07961 2.51765 2.83136

22 0.85827 1.06145 1.32124 1.71714 2.07387 2.50832 2.81876

23 0.85753 1.06034 1.31946 1.71387 2.06866 2.49987 2.80734

24 0.85686 1.05932 1.31784 1.71088 2.06390 2.49216 2.79694

25 0.85624 1.05838 1.31635 1.70814 2.05954 2.48511 2.78744

26 0.85567 1.05752 1.31497 1.70562 2.05553 2.47863 2.77871

27 0.85514 1.05673 1.31370 1.70329 2.05183 2.47266 2.77068

28 0.85465 1.05599 1.31253 1.70113 2.04841 2.46714 2.76326

29 0.85419 1.05530 1.31143 1.69913 2.04523 2.46202 2.75639

30 0.85377 1.05466 1.31042 1.69726 2.04227 2.45726 2.75000

40 0.85070 1.05005 1.30308 1.68385 2.02108 2.42326 2.70446

50 0.84887 1.04729 1.29871 1.67591 2.00856 2.40327 2.67779

75 0.84644 1.04365 1.29294 1.66543 1.99210 2.37710 2.64298

100 0.84523 1.04184 1.29007 1.66023 1.98397 2.36422 2.62589

150 0.84402 1.04003 1.28722 1.65508 1.97591 2.35146 2.60900

∞ 0.84162 1.03643 1.28155 1.64485 1.95996 2.32635 2.57583
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