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Chapter 1

Theory

Let us start with the two parameter fixed effects linear model:

yi “ β0 ` β1xi ` ǫi where ǫi „ Np0, σ2q (1.1)

This two parameter model is a simple model. We can write an even simpler model in which

we we set xi “ 0 or xi “ 1.

In other words,

yi “ β0 ` ǫi

yj “ β0 ` β1 ` ǫj (1.2)

We write this model more elegantly by writing µ for β0 and αi for the second term.

yi “ µ ` αi ` ǫi where ǫi „ Np0, σ2q (1.3)

We will impose a constraint of symmetry on the αi’s such that they are equidistant from µ as

depicted in Figure 1.1.

µ+α 2 µ
✬

µ+α 1
✬

Figure 1.1
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2 CHAPTER 1. THEORY

Mathematically, we impose the constraint that α1 ` α2 “ 0. This constraint will allow us to

produce estimates and ANOVA tables otherwise the problem becomes indeterminable.

αi is called a factor and it has two levels. We can specify more than two levels, like three

level: α1, α2, and α3 where the constraint of symmetry becomes α1 `α2 `α3 “ 0. The number

of levels can be as many as we want. Of course, the more levels, the more complicated the model.

We will look at a two level factorial model.

In Figure 1.2, two factors are shown in which each factor has two levels.

µ+α+β1 1µ+α+β2

✬

✬

µ
✬

✬

µ+α+β
2 µ+α+β

2 2

1

1

Figure 1.2

The goal is to find µ. We hope that the four corners of the rectangle bracket µ. When design-

ing an experiment, we rely on prior experience to specify the four corners.

We will refer to the design shown in Figure 1.2 as 2 ˆ 2 factorial design. In Figure 1.1, we

will say that it depicts a 2 factorial design. We can generalize to more than one or two factors.

A three factorial design would be written as 2 ˆ 2 ˆ 2. A schematic diagram of it would the

same as the one shown in Figure 1.2, but instead of a rectangle, the geometric figure would be

something like a cube. The mathematical expression for a 2 ˆ 2 ˆ 2 is given in equation (1.4).

yijkl “ µ ` αi ` βj ` γk ` ǫijkl where ǫijkl „ Np0, σ2q (1.4)

As in the case of the 2 factorial design, we need to impose the constraints that
ř

αi “ 0,ř
βj “ 0, and

ř
γ “ 0.

The subscript i corresponds to factor α; the subscript j corresponds to factor β; the subscript k

corresponds to factor γ. The subscript l denotes the replication. The experiment can be replicated

several times; that is, the experiment can be done several times under the same experimental

conditions to achieve greater precision in the estimates.
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y11 “ µ ` α1 ` ǫ11 where ǫ11 „ Np0, σ2q
y21 “ µ ` α2 ` ǫ21 where ǫ21 „ Np0, σ2q (1.5)

For example, in equation (1.5), there a 2 factorial design replicated once.

y11 “ µ ` α1 ` ǫ11 where ǫ11 „ Np0, σ2q
y12 “ µ ` α1 ` ǫ12 where ǫ12 „ Np0, σ2q
y21 “ µ ` α2 ` ǫ21 where ǫ21 „ Np0, σ2q
y22 “ µ ` α2 ` ǫ22 where ǫ22 „ Np0, σ2q (1.6)

In equation (1.6), there is a 2 factorial design replicated twice.

y11 “ µ ` α1 ` ǫ11 where ǫ11 „ Np0, σ2q
y12 “ µ ` α1 ` ǫ12 where ǫ12 „ Np0, σ2q
y13 “ µ ` α1 ` ǫ13 where ǫ13 „ Np0, σ2q
y21 “ µ ` α2 ` ǫ21 where ǫ21 „ Np0, σ2q
y22 “ µ ` α2 ` ǫ22 where ǫ21 „ Np0, σ2q
y23 “ µ ` α2 ` ǫ23 where ǫ23 „ Np0, σ2q (1.7)

In equation (1.7), there is a 2 factorial design replicated three times.

By writing equation (1.7) in matrix notation, the patterns of a 2 factorial design replicated

three times will be more apparent.

»
——————–

y11
y12
y13
y21
y22
y23

fi
ffiffiffiffiffiffifl

“

»
——————–

1 1 0

1 1 0

1 1 0

1 0 1

1 0 1

1 0 1

fi
ffiffiffiffiffiffifl

»
–

µ

α1

α2

fi
fl `

»
——————–

ǫ11
ǫ12
ǫ13
ǫ21
ǫ22
ǫ23

fi
ffiffiffiffiffiffifl

Y “ Xβ ` ǫ

The design matrix has an interesting structure. The first column is always filled with 1’s. The

second and third columns remind us a binomial random variable in which the random variable



4 CHAPTER 1. THEORY

represents two outcomes: 1-0, success-failure, on-off, up-down, pass-fail, high-low. We will

write the design matrix again; this time we will ignore the first column, because we know that it

is always filled with 1’s. Instead of 1-0, let us write H for high and L for low.

»
——————–

H L

H L

H L

L H

L H

L H

fi
ffiffiffiffiffiffifl

Actually the second column is redundant. Therefore, for the α factor, we can write the matrix

shown as follows:

»
——————–

H

H

H

L

L

L

fi
ffiffiffiffiffiffifl

(1.8)

By looking at this matrix, we immediately recognize a 2 factorial design with two levels and

replicated three times. It suggests the nature of the experiment. We will take measurements at

the high condition and at the low condition. We hope that the high level and the low level will

bracket µ.

Example 1 Whenever we bake an apple pie, conditions vary especially if we do not precisely

follow the recipe. In a commercial bakery, conditions needs to be highly controlled, in order to

produce consistently good pies. Let us pretend that we want our home kitchen to be run like

a commercial bakery. The Betty Crocker recipe book was written perhaps 60 years ago when

ovens then performed differently than modern ovens. We know that the temperature of the oven

will determine a good pie or a bad pie. We find a judge with good discriminatory taste to evaluate

our pies on a scale of 1=bad to 5=excellent. The high temperature setting will be 400
0F and the

low temperature setting will be 350
0F. The pies will be baked for 40 minutes. From experience,

the high temperature is a little too high and the low temperature is little too low. We are confident

that based on our experience, they will bracket the optimum temperature for earning a 5 from

the judge.

If we were to bake one pie at 4000F and another pie at 3500F, we will have conducted a 2

factorial design experiment replicated once. Suppose on the next day, two pies were baked at the
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high and low temperature settings, then the experiment will have been replicated twice. Suppose

on the third day, another two pies were baked at the high and low temperature settings, then

the experiment will have been replicated three times. As the number of replicates increases, the

more expensive the experiment becomes in terms of time, resources, and money.

From experience, we know that temperature of the oven is an important factor in determining

the taste of a pie. We may design an experiment of not only setting the temperature of the oven

at two different levels, but we can bake the pies at two different lengths of time; perhaps at 30

minutes and 40 minutes. Now, the experiment is a 2 ˆ 2 factor design replicated once.

The experiment can be enlarged to include multiple bakers: Richard, Hank, and Sue. The

experiment has become a 2ˆ 2 ˆ 3 factor design replicated once. There might be other possible

factors. If we keep the experimental conditions as stable as possible, then we can eliminate any

confounding effect. For example, though Hank and Sue might be fluent in English, Richard

might only know German, so that if the instructions are written in English, Richard is likely

to make mistakes in following the recipe. Therefore, to eliminate the confounding effect of the

language of the recipe, Richard should be given a German translation of the recipe.

To produce reliable scores of the pies, we have to assume that the judge gives scores with the

same accuracy from pie to pie.

The design of experiment must take into account not only the assumptions, but also unex-

pected circumstances like what should be done in the event of a power failure or if a different

variety of apple is mistakenly used. �

Following the idea of matrix (1.8), we can show the factors and levels of a 2 ˆ 2 factorial

design replicated once for the model: yij “ µ`αi `βj ` ǫij where ǫij „ Np0, σ2q by the matrix

shown here: »
——–

H H

H L

L H

L L

fi
ffiffifl (1.9)

When we look at the matrix shown above, we notice that there are entries for all combinations

of factors and levels. It looks balances.

Suppose, on the other hand, that the matrix had looked like the one shown as follows:
»
–

H H

H L

L H

fi
fl (1.10)

We see that the L-L row is missing. Not all combinations of factors and levels appear in

matrix (1.10). This is an example of an unbalanced design while matrix shown (1.9) refers
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to a balanced design. The necessary mathematics to produce ANOVA tables for an unbalanced

design becomes very sophisticated. Imagine, in the case of this unbalanced design, a corner of the

rectangle show in Figure 1.2 having disappeared. The mathematics has to deal with the missing

information by employing such things as generalized inverses, the nature of which conform with

certain constraints of the statistician. Even though statistical software packages will produce

numbers by default, the statistician must understand what mathematical constraints the software

is imposing on the unbalanced design problem for producing ANOVA’s. If a statistician is not

careful, he may be misled by the output and make a wrong conclusion.

In Figure 1.3, the co-ordinates of the corners of the rectangle are given by y11, y12, y21, and

y22. We design the experiment so as to bracket µ. Once the set of data, for example in a 2 ˆ 2

factorial design, has been collected, pµ “ y11`y21`y12`y22
4

. This pµ lies at the center of the rectangle

as shown, and we hope that it is close to the true µ.

✬

✬

µ
✬

y
1

y1 2
y

2

y
✬

21

2

1

Figure 1.3

The co-ordinates of µ are
`
y11`y21

2
, y21`y22

2

˘

Table 1.1: Signs for Calculating Effects

µ α β pαβq y

+ - - + y11
+ + - - y21
+ - + - y12
+ + + + y22

Divisor 4 2 2 2 y22

Table 1.1 shows a scheme for calculating estimates of the main effects and of the pαβq
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interaction.

pµ “ y11 ` y21 ` y12 ` y22

4
(1.11)

pα “ ´y11 ` y21 ´ y12 ` y22

2
(1.12)

pβ “ ´y11 ´ y21 ` y12 ` y22

2
(1.13)

xαβ “ y11 ´ y21 ´ y12 ` y22

2
(1.14)

pα is the average of the lengths of the two horizontal edges of the rectangle. They correspond

to the case of measuring the effect of α at the same level of β. For example, if α represents

the effect of temperature of the oven, we measure its effect on taste both times, High-Low tem-

peratures, at 30 minutes and then both times again at 40 minutes. α is a measure of how much

temperature affects the taste of the pie at a given time. Likewise, β is the average of the lengths

of the two vertical edges. β is a measure of how much time affects the taste of a pie twice,

High-Low times, at a given temperature. These estimates tell us how sensitive taste is due to

temperature and to time. The interaction term, xαβ, tells us how much temperature and time are

correlated with each other. For example, the clock on the oven might actually be affected by the

heat coming from the oven in that the hotter the oven, the slower the clock as a result the xαβ
interaction term will probably be a negative number and will probably be significant according

to the ANOVA table.

Example 2 (Georgetown University) A set of data which was obtained from an exper-

iment on examining the effects of levels of nitrogen and the structure of an habitat on the number

of species of arthropods over a four month period on seven locations was produced by a four pa-

rameter fixed effects linear model with the response variable, yijkl, being the number of species

of arthropods:

yi “ µ ` αi ` βj ` γk ` δl ` ǫijkl where ǫijkl „ Np0, σ2q (1.15)

The definitions of the factors are given in Table 1.2.

A model is deemed to be a good model if the underlying theory makes sense, if there ap-

pears to be a conspicuous pattern in a plot of the data, if we can reject the hypothesis that the

parameters of the model are zero, and if the assumptions of the model like the assumption that

the residuals are indistinguishable from white noise are valid.

The factors which the analyst deemed to have been useful are: Richness, Fert, Thatch,

Month, and Block.
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Table 1.2: Definitions of Factors

Effect Definition Given Variable Name Level Meaning

y Number of Species Richness

0 None

α Fertilization Treatment Fert L Low

H High

β Habitat Structure Thatch 0 Thatch Removed

Th Thatch Present

1 17 June

γ Month Month 2 27 June

3 12 July

4 12 August

1

2

δ Block Block 3

4

5

6

7

Richness is the response variable. It is a measure of the number of species of arthropods

which are found in an area of a certain size. According to the theory, if the habitat is fertile and

healthy, there should be an abundance of arthropods with many species. The scientists believe

that applications of fertilizer, Fert, will improve the growth of the flora and thereby produce

a better habitat for arthropods. Thatch is either removed or it is left undisturbed. The effect,

Month, takes into account changes in sunlight intensity and moisture during the growing season.

Finally, there is the factor, Block.

Much of the vocabulary of experimental designs is derived from agricultural research which

was conducted by Ronald Fisher and other British scientists. It seems obvious that growing

conditions depend on soil, moisture, and sunlight, for example. However, these conditions might

differ by the location of a plot of land. A plot might have a slope; another one might have less

fertility; another might be sodden with water. The scientists called these plots, blocks. Generally,

we are not interested whether one block is more productive than another, rather, we are interested

in measuring the effect of fertilizer and the amount of residual thatch in affecting the richness of

species of arthropods.

The term block is used in other experiments as a variable which has an effect on the response
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but which is not a subject of concern. It is used to eliminate a variable as a confounding effect.

For example, does attending lecture increase Final Examination scores. A blocking variable

might be the sex of the student; it might be a significant factor, but we are not interested in it.

Instead, we are interested in the effect which attendance plays on examination scores regardless

of a student’s sex. We would block on sex as a way to eliminate it as a confounding variable.

The structure of the original set of data suggests the following four factor fixed effects linear

model:

yi “ µ ` αi ` βj ` γk ` δl ` ǫijkl where ǫijkl „ Np0, σ2q (1.16)

which was presented in the introduction as equation (1.15).

According to the model, we are dealing with a five dimensional set of data. As such, it is

impossible to make a picture of the data at once. Instead, we will look at two dimensional slices

of the data, in order to discover whether there exists any conspicuous relationships between the

variables or trends in the data.

1.1 Make a Picture of the Data

To begin with, we will look at each variable individually as if there are not other factors present.

The presence of other factors will muddy any patterns which might appear, but in the gross

context, we might see some obvious trends.

There appears in Figure 1.4 an increase in Richness due to a high level of fertilizer over

no fertilizer. We, therefore, should expect to reject the hypothesis that the richness is the same

across levels of fertilizer in the ANOVA table.

Figure 1.5 suggests that removing the thatch does not affect the richness in species of the

area.

Perhaps month has an affect on richness as suggested in Figure 1.6. We might see a corre-

sponding significant effect in the ANOVA table.

A blocking factor is used to eliminate an effect. Presumably, block accounts for seven

geographic areas. Whether there is a difference in richness between locations evidently is not a

matter of concern whereas within a block the factors of fertilizer, thatching, and month are being

examined to assess whether they can explain the response.
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Figure 1.4: Box Plots of Richness by Levels of Fertilizer
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Figure 1.6: Box Plots of Richness by Levels of Month
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Figure 1.7: Box Plots of Richness by Levels of Blocks
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1.2 Analysis of Variance Table

An analysis of variance table can be produced by means of some statistical software product. A

model such as the one given by equation (1.16) and which is written again as:

yi “ µ ` αi ` βj ` γk ` δl ` ǫijkl where ǫijkl „ Np0, σ2q (1.17)

forms the basis of an analysis of variance to test the hypothesis that the four factors are significant

in explaining the richness in the population of arthropods. By means of the R software program,

the following ANOVA is produced:

Analysis of Variance Table

Response: Richness

Df Sum Sq Mean Sq F value Pr(>F)

fert 2 1620.33 810.17 70.3243 < 2.2e-16 ***

thatch 1 24.38 24.38 2.1163 0.1478

block 6 685.24 114.21 9.9134 3.000e-09 ***

month 3 917.79 305.93 26.5553 6.467e-14 ***

Residuals 155 1785.67 11.52

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We see that the factor for Thatch has a p-value of .1478. We may assume that it does not

make a significant contribution in explaining the response variable, Richness.

As was expected from inspecting Figures 1.4 and 1.6, fertilizer and month are significant fac-

tors in explaining Richness. Somewhat surprising is that Block is an important factor even

though according to the box plots given in Figure 1.7, there does not appear to be a conspicuous

difference between them. We need to keep in mind that a plot of the data like Figure 1.7 is only

a two dimensional slice of a five dimensional set of data.

In order to asses the validity of the assumption of the model that ǫijkl „ Np0, σ2q, that is, the

assumption that the residuals resemble white noise. The plot of residuals versus predicted values

shown in Figure 1.8 shows a random pattern; therefore, we may consider that assumption of the

ǫijkl’s is valid. Moreover, the QQ plot, also, shown in Figure 1.8 shows a good diagonal trend.

Both diagnostic plots support the claim that the model is a good model.



1.2. ANALYSIS OF VARIANCE TABLE 15

15 20 25 30

−
10

−
5

0
5

Plot of Residuals vs Predicted Values

Predicted Values

R
es

id
ua

ls

−2 −1 0 1 2

−
10

−
5

0
5

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s
Figure 1.8: Diagnostic Plots for the Assumption of Normality of the Residuals

Confidence intervals, of course, are of paramount importance in making statistical infer-

ences. Because the current set of data lies in a five dimensional space, five dimensional con-

fidence regions are impossible to draw. For the same reason when a series of box plots were

made to examine the data in two dimensional slices, two dimensional confidence intervals are

constructed for Richness according to month and Thatch. Though the effects of Block

are confounded in the confidence intervals, the confidence intervals provide a useful portrayal

of the effects of Fert, Thatch, and month on Richness.

The pattern of applying fertilizer to improve richness is apparent in Figure 1.9. High fertilizer

always produces a higher richness. We see in the same figure that keeping the thatch or removing

it will not affect richness to which the ANOVA agrees.

In conclusion, the scientists showed that the vitality of the flora which a high level of fertilizer

promotes is an important factor regardless of location, month, and the presence of thatch. �



16 CHAPTER 1. THEORY

0
10

20
30

40

Richness According to 
 Fertilizer and Thatch by Month

R
ic

hn
es

s H

H

LL

OO

HH LL

OO

H

H L

L
O

O

HH

LL

O
O

Month 1 Month 2 Month 3 Month 4

No Thatch
Thatch

Figure 1.9: 95% Confidence Intervals of Richness by Fert, Thatch, and month.



Chapter 2

McClave Problem 9.62 Cows

Stress in cows prior to slaughter. What is the level of stress (if any) that cows undergo prior

to being slaughtered? To answer this question, researchers designed an experiment involving

cows bred in Normandy, France (Applied Animal Behaviour Science, June 2010). The heart rate

(beats per minute) of a cow was measured at four different pre-slaughter phases - (1) first phase

of visual contact with pen mates, (2) initial isolation from pen mates for prepping, (3) restoration

of visual contact with pen mates, and (4) first contact with human prior to slaughter. Data for

eight cows (simulated from information provided in the article) are given in the SPSS set of data

called: COWS.sav.

2.1 Discussion

The model is:

BPMij “ µ ` cowsi ` phasej ` ǫij where ǫij „ Np0, σ2q
yij “ µ ` αi ` βj ` ǫij where ǫij „ Np0, σ2q

for i “ 1, . . . , 8 and j “ 1, . . . , 4

The set of data was evidently obtained from an 8 ˆ 4 factorial design replicated once where

we are interested in determining whether or not phase makes a difference while cow is being

blocked since we do not care about differences from cow to cow. The response variable is BPM

which is beats per minute of a cow’s heart.

To that end, we will test the hypothesis that H0 : phase1 “ phase2 “ phase3 “ phase4 “
0 vs H1 : otherwise at a level of significance α “ .05. The effect due to the cows will be

17
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removed by the analysis of variance, so that the effect of phase will not be confounded with the

effect of the differences between cows. The Analysis of Variance Table is given below:

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

phase 3 521.12 173.708 3.6302 0.0296773 *

cow 7 1922.87 274.696 5.7406 0.0008201 ***

Residuals 21 1004.87 47.851

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We see both in Figure 2.1 and in the ANOVA table that phase has an important effect on the

heart rate. Also in Figure 2.1, we see that there are differences between cows which is reflected in

the ANOVA table. The plot of residuals versus predicted values as shown in Figure 2.2 seems to

have a downward trend and in the QQ plot as shown in Figure 2.3 there appears to be a deviation

from the diagonal at both ends of the plot. Based on these diagnostic plots of the assumption

that ǫ „ Np0, σ2q, the model appears to be defective.
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With a closer inspection of the plot of residuals versus predicted values, six points can be

identified and they correspond to the points in the QQ plot which deviate from the diagonal.

It appears that cow #1 and phase #2 are not being adequately explained by the model. Either

that cow is problematic and not representative of the population of cows which are suitable for

slaughter or there exists a characteristic of the cow which is confounding factor which the model

experimenter has not taken into account. Likewise, there is something not right with phase #2.
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Point Cow Phase Residual Predicted Value

A 7 2 -8.6875 88.6875

B 8 2 -14.9375 98.9375

1 1 2 14.3125 109.6875

2 8 1 10.0625 109.9375

3 1 3 -6.8125 115.8125

4 1 4 -10.8125 117.8125

Perhaps the experimenters should examine the conditions of phase #2 to make sure that phase

#2 is well defined in terms of timing or ambient conditions.

2.2 Questions

1. cow and phase are the main effects where cow is the block and phase is the effect of

interest.

2. According to the ANOVA table, both effects are significance at a level of significance,

α “ .05.

3. The plot of the data and the ANOVA table agree that there are differences between phases.

4. The problem with comparing confidence intervals for each of the phases is the confound-

ing effect which cows have on them.

5. None of the questions which Professor McClave asks address the diagnostics of the model.

By examining them, we learn that the experimenters need to examine more closely the

behavior of cow #1 and the conditions of phase #2. Though they look like outliers, they

provide useful information for the experimenters to improve their model.



Chapter 3

Microwave Experiment

3.1 Description of the Experiment and Proposed Linear Model

Six plastic cups are filled with 8 oz. of water each. All cups of water are allowed to come to

room temperature. The first cup of water being unheated serves as the basis. The second cup is

heated in a microwave oven for 5 seconds; the third cup of water is heated for 10 seconds; the

fourth cup of water is heated for 15 seconds, and so on until the last cup of water is heated for

25 seconds. After each cup is heated, the final temperature of the water is recorded. The results

of the experiment are shown in the table and graph below.

23
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Table 3.1

Time (sec) Temperature (oF )

0 70

5 81

10 92

15 100

20 110

25 118
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It should go without saying that the first order of business is to make a picture of the data.

When the set of data for the microwave experiment is plotted, the trend looks linear; therefore,

it seems reasonable to assert that there exists a linear relationship between temperature and the

time spent in heating the water. If we let x denote time and y denote temperature, then the

assertion that a linear relationship exists between x and y is expressed by: yi “ β0 ` β1xi ` ǫi
where ǫi „ Np0, σ2q.

3.2 Matrix Formulation of the Proposed Linear Model

Accordingly, a system of six equations in two unknowns, β0 and β1, for every pair (x,y) exists.

70 “ 1β0 ` β10

81 “ 1β0 ` β15

92 “ 1β0 ` β110

100 “ 1β0 ` β115

110 “ 1β0 ` β120

118 “ 1β0 ` β125
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Any two equations will produce a unique solution for β0 and β1. However, there are six

equations but only two unknowns, that is, there are too many equations. We resort to the method

of least squares to produce best estimates of β0 and β1 which will minimize the sum of squared

errors, SSE.

A matrix formulation of the six equations will make the production of the estimates easier

and transparent. The same information is now written in a matrix form.

»
——————–

70

81

92

100

110

118

fi
ffiffiffiffiffiffifl

“

»
——————–

1 0

1 5

1 10

1 15

1 20

1 25

fi
ffiffiffiffiffiffifl

„
β0

β1


`

»
——————–

ǫ1
ǫ2
ǫ3
ǫ4
ǫ5
ǫ6

fi
ffiffiffiffiffiffifl

(3.1)

Recall the definition of dot project between two vectors: pa, bq9pA,Bq “ aA ` bB. In matrix

notation, this can be written as:

“
a b

‰ „
A

B


“ aA ` bB

The six equations can be written abstractly as follows

Y “ Xβ ` ǫ (3.2)

where X is call the design matrix.

By re-arranging equation (3.2), we can write:

ǫ “ Y ´ Xβ (3.3)

The sum of squared errors is expressed by equation(3.4)

ǫ1ǫ “
“
ǫ1, ǫ2, ǫ3, ǫ4, ǫ5, ǫ6

‰

»
——————–

ǫ1
ǫ2
ǫ3
ǫ4
ǫ5
ǫ6

fi
ffiffiffiffiffiffifl

“
ÿ

ǫ2 “ SSE (3.4)

or equivalently,

SSE “ ǫ1ǫ

“ pY ´ Xβq1pY ´ Xβq (3.5)
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The x’s and the y’s are given by the data; they are constants. The unknowns are: β0 and β1.

SSE is therefore a function of β0 and β1. To minimize SSEpβ0, β1q, we differentiate SSE with

respect to β0 and β1 and set the derivatives to zero, that is, BSSE
Bβ0

“ BSSE
Bβ1

“ 0 and solve for β0

and β1. In the matrix formulation of SSE as shown in equation (3.5), matrices are differentiated

with respect to the vector, β. After a series of matrix algebraic manipulations, the least squares

estimator becomes:

pβ “ pX1Xq´1X1Y (3.6)

3.3 Computation Using the Matrix Formulation of the Pro-

posed Linear Model

Equation (3.6) is essentially the starting point for deriving least squares estimates. We will apply

equation (3.6) to the microwave problem. From equation (3.1)

X “

»
——————–

1 0

1 5

1 10

1 15

1 20

1 25

fi
ffiffiffiffiffiffifl

and

X1 “
„
1 1 1 1 1 1

0 5 10 15 20 25



so that,

X1X “
„
1 1 1 1 1 1

0 5 10 15 20 25



»
——————–

1 0

1 5

1 10

1 15

1 20

1 25

fi
ffiffiffiffiffiffifl

“
„

6 75

75 1375


“

„
n

ř
xiř

xi

ř
xiyi
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The inverse of X1X is:

pX1Xq´1 “

„
1375 ´75

´75 6



6p437.5q “

„ ř
x2
i ´ ř

xi

´ ř
xi n



nSSxx

(3.7)

The final piece for the computation of equation (3.6) is:

X1Y “
„
1 1 1 1 1 1

0 5 10 15 20 25



»
——————–

70

81

92

100

110

118

fi
ffiffiffiffiffiffifl

“
„
5716

7975


“

„ ř
yiř

xiyi


(3.8)

Putting the pieces together into equation (3.6), we get

pβ “ pX1Xq´1X1Y

“

„
1375 ´75

´75 6



6p437.5q

„
5716

7975



“
„
71.238

1.914


“

«
pβ0

pβ1

ff
“

«
ȳ ´ pβ1x̄

SSxy

SSxx

ff

The least squares fit is: ŷ “ 71.238 ` 1.914x and it is drawn through set of data as shown in

Figure 3.1.
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Figure 3.1

3.4 ANOVA Table and Diagnostics

In Table 3.2, the residuals are listed and their sum of squares is given as 5.6178 which is SSE.

It is the same number which appears in the ANOVA table given by Table 3.3 for residual errors

under the sum of squares column.

Table 3.2

Time (sec) Temperature (oF ) zEryis pǫi “ yi ´ pyi pǫi2 “ pyi ´ pyiq2
0 70 71.238 ´1.238 1.5326

5 81 80.810 `.190 .0361

10 92 90.381 `1.619 2.6212

15 100 99.952 `.048 .0023

20 110 109.524 `.476 .2266

25 118 119.095 ´1.095 1.1990

Total 0 5.6178

Based on the F test statistic which we computed in the ANOVA table, we may reject the null
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Table 3.3: Analysis of Variance Table

Source of Variation df Sum of Squares Mean Sum of Squares F statistic

Mean 1 6p95.1667q2=54340.17

Regression 1 1.914(837.5)=1603.215 1603.215 F=1142

Residual Error 4 55949-54340.17-1603.215=

5.615 s
2 “ 1.40375

Total 6
6ř

i“1

y
2

i “ 55949

hypothesis H0 : β1 “ 0 vs H1 : β1 ‰ 0 at α “ .05, because F “ 1142 ą 7.71 “ F1, 4, .05.

According to the random pattern which is exhibited the first diagnostic plot shown in Figure

3.2, we may conclude that the ǫ’s represent white noise in agreement with the assumption of

the asserted linear model. The QQ plot shown in Figure 3.3 shows a fairly diagonal line which

validates the assumption that the ǫ’s follow a Normal distribution. This latter assumption justifies

the use of making inferences by testing the hypothesis that H0 : β1 “ 0 vs H1 : β1 ‰ 0 by

means of the F test statistic and for constructing confidence intervals based on the Student’s

t distribution. Because both the F and Student’s t distributions are derivatives of the Normal

distribution, it is imperative to verify the assumption of normality of the ǫ’s.
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3.5 Confidence Interval for an Estimate Produced by a Lin-

ear Model

An estimate needs to have a confidence interval. To the end of constructing such a confidence

interval, let X be a fixed n ˆ p matrix. Each row of X corresponds to one observation of a

vector of p explanatory variables. Let β be a pˆ1 vector of parameters for the linear model. The

components of β are fixed, but, in general, are unknown. The linear model can be written as:

Y “ Xβ ` ǫ

The least squares estimate of β is:

pβ “ pX1Xq´1
X1Y (3.9)

We will use the microwave data to illustrate the construction of confidence intervals for a

linear model. The design matrix and the vector of the responses for the microwave experiment
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are given below:

X “

»
——————–

1 0

1 5

1 10

1 15

1 20

1 25

fi
ffiffiffiffiffiffifl

Y “

»
——————–

70

81

92

100

110

118

fi
ffiffiffiffiffiffifl

As was done earlier, we will use equation (3.9) to produce the following estimates.

pβ “
«

pβ0

pβ1

ff
“

„
71.238

1.914



Given a fitted model, we use it to interpolate. The fitted model is: pyp “ 71.238 ` 1.914xp

What is the confidence interval for the estimated temperature, pyp, of the water when it is heated

in the microwave over forxp “ 17 seconds, for example?

The formulas for the lower and upper limits of the confidence intervals for {Eryps and for pyp
are shown in Table 3.4. Let qp “

„
1

xp


so that we may write the fitted model, pyp “ pβ0 ` pβ1xp

as pyp “ q1 pβ

Since qp “
„

1

xp


“

„
1

17


, pβ “

„
71.238

1.914


, and using equation (3.7), we get

q1pX1Xq´1
q “ r1, 17s

„
1375 ´75

´75 6



6p437.5q

„
1

17


“ .21295

Also, q1 pβ “ r1, 17s
„
71.238

1.914


“ 103.776

tn´2,α
2

“ t4,.025 “ 2.776

s “
?
1.40375 from ANOVA Table Ñ s “ 1.11847
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Table 3.4: 100(1-α)% Confidence Intervals (a,b)

{Eryps pyp

a “ q1 pβ ´ tn´r;α
2
s

b
q1pX1Xq´1

q a “ q1 pβ ´ tn´r;α
2
s

b
1 ` q1pX1Xq´1

q

b “ q1 pβ ` tn´r;α
2
s

b
q1pX1Xq´1

q b “ q1 pβ ` tn´r;α
2
s

b
1 ` q1pX1Xq´1

q

where s2 “ sse
n´r

where s2 “ sse
n´r

By means of the appropriate equations found in Table 3.4,

a “ q1 pβ ´ tn´r;α
2
s

b
q1pX1Xq´1

q

“ 103.776 ´ 2.776p1.11847q
?
.21295 “ 102.34

b “ q1 pβ ` tn´r;α
2
s

b
q1pX1Xq´1

q

“ 103.776 ` 2.776p1.11847q
?
.21295 “ 105.21

for the expected temperature, and

a “ q1 pβ ´ tn´r;α
2
s

b
1 ` q1pX1Xq´1

q

“ 103.776 ´ 2.776p1.11847q
?
1.21295 “ 100.36

b “ q1 pβ ` tn´r;α
2
s

b
1 ` q1pX1Xq´1

q

“ 103.776 ` 2.776p1.11847q
?
1.21295 “ 107.19

for a particular temperature. The confidence intervals are shown in Table 3.5.

In the special case of a simple two parameter fixed effects model, the formulas for the confi-

dence interval shown in Table 3.4 collapse to the familiar ones as shown in Table 3.6.
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Table 3.5: 100(1-α)% Confidence Intervals (a,b)

{Eryps pyp

(102.34,105.21) (100.36,107.19)

where {Eryps “ 103.776 pyp “ 103.776

Table 3.6: 100(1-α)% Confidence Intervals (a,b)

{Eryps “ pβ0 ` pβ1xp pyp “ pβ0 ` pβ1xp ` ǫp

a “ {Eryps ´ tn´2;α
2
s

b
1

n
` pxp´x̄q2

SSxx
a “ Er pyps ´ tn´2;α

2
s

b
1 ` 1

n
` pxp´x̄q2

SSxx

b “ {Eryps ` tn´2;α
2
s

b
1

n
` pxp´x̄q2

SSxx
b “ Er pyps ` tn´2;α

2
s

b
1 ` 1

n
` pxp´x̄q2

SSxx

where s2 “ sse
n´2

where s2 “ sse
n´2

We may plot the confidence intervals on the graph of the data as shown in Figure 3.4 in

which they are shown as continuous curves. The blue pair of curves (the inner pair) correspond

to the confidence intervals for the expected y, i.e. for the average while the red pair of curves

(the outer pair) correspond to the confidence intervals for the particular y. Note that the curves

come closest to the fitted line at the point (x̄,ȳ). This is because when xp “ x̄, the limits become:

a “ {Eryps ´ tn´2;α
2
s

c
1

n
ą {Eryps ´ tn´2;α

2
s

d
1

n
` pxp ´ x̄q2

SSxx

for any xp ‰ x̄

b “ {Eryps ` tn´2;α
2
s

c
1

n
ă {Eryps ` tn´2;α

2
s

d
1

n
` pxp ´ x̄q2

SSxx

for any xp ‰ x̄

In a philosophical sense, since px̄, ȳq lies in the midst of the data, it is surrounded by infor-

mation. Usually, though, the fringes of the data contain the interesting information. For instance,

a safety engineer is interested in conditions where a system will fail such as those cases which

lies far from the bulk of the data or a social scientist is interested in subjects who exhibit unusual

behavior like those who represent the outliers of the data. It is not uncommon to see lying with



34 CHAPTER 3. MICROWAVE EXPERIMENT

statistics by a protagonist steering the attention of the audience to the region near px̄, ȳq and

away from the fringes of the set of data.

The curves were made by using the equation

fpξq “ pβ0 ` pβ1ξ ´ tn´2;α
2
s

d
1

n
` pξ ´ x̄q2

SSxx

for the lower limit. The curve for the upper limit follow the corresponding formula.

0 5 10 15 20 25

70
80

90
10

0
11

0

Heating Water in a Microwave Oven 
 Confidence Intervals

Time (seconds)

Te
m

pe
ra

tu
re

 (°
F
)

xp

yp

x

y

Figure 3.4



3.6. ANALYSIS OF THE MICROWAVE DATA IF IT HAD BEEN GOTTEN FROM A 2 FACTORIAL DESIGN

3.6 Analysis of the Microwave Data If It Had Been Gotten

from a 2 Factorial Design

We noticed that temperature and time exhibit a strong linear relationship to each other. A straight

line is defined mathematically by two points. A conceivable design of experiment, therefore,

would be to take measurements at the two end points of the line namely at (0,70) and at (25,118).

Suppose a 2 factorial design replicated three times had been followed to obtain the set of mi-

crowave data as shown in Table 3.7. In both Table 3.1 and in Table 3.7 there are measurements

taken from six observations. In Table 3.1, the measurements are evenly spaced from the left to

the right end points of the line while in Table 3.7 three measurements were taken at the left end

point and three were taken at the right end point in accordance with a 2 factorial design repli-

cated three times. Which design is better? Theoretically, the 2 factorial design replicated three

times will produce a fitted least squares line with a smaller SSE than the design in which the

observations are scattered between the end points.

Table 3.7

Time (sec) Temperature (oF )

0 70.0

0 71.4

0 72.8

25 119.2

25 119.6

25 118.0
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The parameters of the fitted model which is based on the 2 factorial design experiment are

shown in Table 3.8 along side the estimated parameters based on the original design where the

observations were made at even intervals of time.
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Table 3.8

Parameter Original 2 Factorial

Design Design

pβ0 71.238 71.400

pβ1 1.914 1.901

A tabulation of the predicted values and the corresponding residuals is shown in Table 3.9.

From the table, we can make a plot of residuals versus predicted values which can be seen in

Figure 3.5 along side the QQ plot shown in Figure 3.6.

Table 3.9

Time (sec) Temperature (oF ) zEryis pǫi “ yi ´ pyi pǫi2 “ pyi ´ pyiq2
0 70.0 71.4 ´1.400 1.960

0 71.4 71.4 0.0 0.0

0 72.8 71.4 `1.400 1.960

25 119.2 118.93 `.266 .071

25 119.6 118.93 `.666 .444

25 118.0 118.93 ´.933 .871

Total 0 5.3066
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Not only is the F test statistic larger in the 2 factorial design than in the original design, but

the QQ plot for the 2 factorial design looks better.

Table 3.10: Analysis of Variance Table

Source of Variation df Sum of Squares Mean Sum of Squares F statistic

Mean 1 54340.17

Regression 1 3389.127 3389.127 F=2554.618

Residual Error 4 5.3066 s
2 “ 1.3266

Total 6
6ř

i“1

y
2

i “ 57734.6

There are advantages for designing an experiment by collecting measurements between the

end points as in the case of the original design for the microwave experiment when one does

not know enough about the phenomenon to assert with confidence that the relationship between
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time and temperature is linear. In Figure 3.7, there appears a non-linear aberration in the func-

tional relationship between time and temperature. It could correspond to an unexpected chemical

reaction or a change in phase which would not be detected in a factorial design, but would be

discovered by using the original design whereby observations are made at evenly spaced periods

of time.
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Figure 3.7


