Chapter 11

Goodness-of-Fit

Karl Pearson
1857-1936

The goodness-of-fit test is very old. It was presented by Karl Pearson in 1900. One
of the principal goals of a statistician is to associate a probability distribution with a
histogram of experimental data. Probability distributions lie in the imaginary world of
abstract things like events and sample spaces whereas histograms are constructed from
actual measurements. The goodness-of-fit test provides an analytical test for determining
if a specified distribution may be ascribed to a population. A X? quantile will serve the
purpose of a measuring stick to judge the fit between the histogram and the probability
distribution.

Suppose two dice are tossed twenty times and define a random variable, X, which gives
the sum of the faces of the two dice. The observed sum of the faces for each toss is listed
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The histogram of the data appears on the left in Figure 11.1. If the two dice are actually
fair, then the distribution of X would assume the Triangle distribution like the one shown
on the right in Figure 11.1. The histogram bears some resemblance to the Triangle dis-
tribution, but the claim that the histogram and the probability distribution form a good
fit is questionable simply based on inspection. Suppose that the dice are indeed fair, then
the expected number of 2’s which would appear from rolling two dice twenty times will be
np = 20%, and the expected number of 3’s will be np = 20%, and so on. These expecta-
tions are listed in Table 11.1 in which the observed frequency for each value of X appears
on the top line, the expected frequency if the dice were fair, appears in the middle row.
The bottom row contains the deviations. If the deviations are small, then for practical

purposes, the probability distribution agrees with the histogram.

Table 11.1
Sum of Faces 2 3 4 5 6 7 8 9
Observed 1 3 4 1 1 2 2 2
Expected 20(35) 20(3%) 20(35) 20(z5) 20(z5) 20(z5) 20(z5) 20(z)
Deviation 444 1.889 2333 -1.222 -1.777 -1.333 -T78 0 -.222
Sum of Faces 10 11 12
Observed 1 1 2
Expected 20(2) 20(&) 20(s)
Deviation -.667 -.111 1.444

Not surprisingly, the sum of the deviations is equal to zero. In order to eliminate
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the effect of negative deviations, they are squared and rather unexpectedly, each squared
deviation is divided by the expected value.

Definition 50. X% =" (observed; —capectedi) o oqlled the chi-squared test statistic.
i=1

expected;

Example 59. Find the chi-squared test statistic for the previous ezample of throwing
two dice twenty times.
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The X? test statistic gives an indication of the discrepancy in the fit between the
histogram and the probability distribution. By comparing it to the X? quantile, the size of
the discrepancy will either be too big to support the claim that the probability distribution
adequately fits the data or small enough to say that the fit is not bad. If the X? test statistic
is too big, then the null hypothesis that the histogram and the probability distribution
agree must be rejected. The criterion for rejection is given in the following table.

Hy Test Statistic Hiq Reject when
2 (ob di— ted;)?
Population has | X2 = 37 "meen ot Population  does | X? > X2 | |
specified  distribu- =1 not have specified

tion distribution

A tabulation of X? quantiles is given in Appendix D.

Example 60. Test the hypothesis that the empirical distribution shown by the histogram
of the frequency of throwing two dice twenty times is the same as the theoretical distribution
at a level of significance of o = .05

Does X? = 13.445 > 18.3072 No, cannot reject the null hypothesis that the observed
histogram follows the Triangle distribution.

As imperfect as the shape of the histogram appears in relation to the Triangle distri-
bution, the conclusion of the goodness-of-fit test substantiates the claim that the Triangle
distribution may be used to account for the experimental outcomes of the actual tossing of
two dice. The implication is that the characteristics of the population which are manifested
in the experimental results from tossing of two dice not only twenty times but any number
of times may be adequately explained by the Triangle distribution. Furthermore, having
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successfully made the association between the population which produced the histogram
and the sample space consisting of two imaginary fair dice, we may say that the real dice,
too, are probably fair. Although we should not say that the goodness-of-fit test proves
that the two dice are fair, yet the conclusion of not rejecting the null hypothesis indicates
that the dice are probably fair and that the Triangle distribution may adequately describe
the population until additional evidence demonstrates otherwise.

11.1 Contingency Table

The X2 test can be extended from one to two dimensions, for example:

Problem 13. A random sample of 200 married men, all of whom are retired, were
classified according to education and to the number of children whom they sired.

Number of Children
Education 0-1 2-3 over 3 | Row Totals
Elementary 14 (18.675) 37 (39.84) 32 (24.495) 83
Secondary 19 (17.55) 42 (37.44) 17 (23.01) 78
College 12 (8.779) 17 (18.72) 10 (11.505) 39
Column Totals 45 96 59 200

Definition 51. This table is called a contingency table. An element of it is called a
cell.

The numbers written within parentheses are the expected number of occurrences if
education and number of children are independent.

Question 4. Are education and number of children independent events?

Let A be the event of siring 0-1 children. Let B be the event of only getting an el-
ementary school education. If A and B are independent, then P(A N B) = P(A)P(B)

where P(A) = ;& and P(B) = 2. In the case of independence, what would be the

expected number of men who sired 0-1 children but got an elementary school education?
np = 200P(A N B) = 200P(A)P(B) = 20022 = X8 — 18 675. This same number

) ) ) 200 200 200
appears in the contingency table within parentheses.
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What is the expected number of men who got an elementary education and sired 2-
3 children? Let C be the event of siring 2-3 children. Let B be the event of getting an
elementary school education. If C and B are independent, then np = 200P(C N B) =
200P(C)P(B) = 2008 8. — 39.84.

200 200
It does not take long to see a pattern emerge from calculating the expected frequencies.
We will use the pattern to shorten the computations as is done in our final example. The

expected number in the cell for siring 3 or more children with a college education is

59x39 — 11505,

The criterion for rejecting the null hypothesis of a contingency table is given below.

Hy Test Statistic H, reject when

n L )2 .
Rows and columns | X2 = Y (ebservedi—eopecteds) Nt jpdependent | X2 > X2,
=1 expected; )

are Independent where v = (r —1)(c—1)
r=number of rows

c=number of columns

Example 61. In our evample, r=3 and c=3; therefore, v = (3 — 1)(3 — 1) = 4.
Suppose that o = .05. The appropriate X? quantile for conducting a goodness-of-fit test is:
X? 05 = 9.48.

(observed; —expected;)? __ (14—18.675)2 (37—39.84)2 + (10-11.505)% _ 7 4626.

2 __
X = expected; - 18.675 + 39.84 +.. 11.505

IR

i=1

Is X% = 7.4626 > 9.482 No. Therefore, we cannot reject the null hypothesis. Hence,

based on the data, a man’s education and the number of children whom he sires appear to
be independent at a level of significance of a = .05.

The choice of a has thus far been arbitrary. For sufficiently large a’s, the null hypothesis
can be rejected. For sufficiently small a’s, the null hypothesis cannot be rejected. That «
which lies exactly at the boundary of admitting a rejection or no rejection is called the p
value of the test. It is often published with the results of an analysis for the benefit of the
reader. The p value for the above test is p = P(X? > 7.4626) = .113. We used a = .05
in conducting the test but since o < p, the null hypothesis could not have been rejected.
Only when « exceeds .113 will the null hypothesis be rejected.

Example 62. An ezperiment was conducted to investigate the effect of a vaccination
on laboratory animals. Some animals when exposed to the disease contracted it, and some
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did not according to whether the animal was inoculated. The developer hopes that the
vaccine and the contraction of the disease are not independent. To prove his belief, the
null hypothesis was formulated to assume the worst case in that the vaccination and the
likelihood of getting a disease are independent in the hope that it will be rejected at a level
of significance of .05. A tabulation of the results appears below.

Got the Disease Did not get the Disease
Vaccinated 9 (13.84) 42 (37.19) | 51
Not Vaccinated 17 (12.19) 28 (32.81) | 45
Column Totals 26 70 | 96

1.a=.05v=(r—1)(c—1)=1.
2. The expected number of cases assuming independence is given in parentheses.

4
2 (observed; —expected;)? __ (9—13.84)2 (42—37.19)2 (17-12.19)2 (28—32.81)2
3. X _2 expected; ="Bs1 v mi T 1219 T s = 4.918.
1=

4. X2 o5 = 3.48146.

5. Is X? = 4.918 > 3.48?2 Yes. Reject the null hypothesis that the vaccination and
contracting the disease are independent. In conclusion, based on the data, it appears
that the vaccination prevents the contraction of the disease.

The p value of the test is that a at which the null hypothesis can and cannot be rejected.
It is p = .0266 = P(X? > 4.918). For an o > p, the null hypothesis will be rejected; for an
a < p, the null hypothesis cannot be rejected. In other words, suppose « is chosen slightly
larger than p, like o = .0267, then X7 (55, = 4.910 and because 4.918 > 4.910, the null
hypothesis is rejected. Suppose, on the other hand, « is chosen slightly smaller that p, like
o = .0265, then X7 565 = 4.923 and because 4.918 /£4.923, the null hypothesis cannot be
rejected. The use of the p-value offers a reader a way to judge the proximity of the test
statistic to the boundary of the rejection region which the p value marks.



