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1 Mathematical Background

Published tables generally include the commonly used values, for one reason, in order
to conserve space. For another reason, since it was very laborious to construct compu-
tationally difficult tables before the advent of computers, tables as a result were usually
copyrighted, so that securing permission to publish them posed another incentive to ab-
breviate tables as much as possible. Consequently, it is not uncommon to discover, during
the process of finding probabilities, values which are not in the table. Suppose a z-score
had been calculated to have a value of 1.227 for which its corresponding probability is
desired. The table of probabilities for the Standard Normal distribution which appears in
Appendix 6 provides a listing for P (z ≤ 1.22) = .88877 and P (z ≤ 1.23) = .89065, but
provides no listing for P (z ≤ 1.227). An entry in the table of probabilities depicting our
dilemma might appear as:

c P (z ≤ c)

1.22 .88877
1.227 ?
1.23 .89065

In the era before hand calculators and computers, a simple way to obtain a value
of P (X ≤ 1.227) would have followed the method of linear interpolation by which an
approximate value for P (X ≤ 1.227) would be computed from its neighbors by using
straight lines like those shown in Figure 1.

Linear interpolation is one of many techniques falling under the auspices of the dis-
cipline called numerical analysis. It is a branch of mathematics and computer science in
which methods for finding numerical values of symbolic numbers are studied and devel-
oped. For example, when one asks the question: “What is

√
2?”, he is asking for a decimal

value of
√
2. Such a question posed a philosophical problem for the Greeks. Everything in
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Figure 1

nature was supposed to have a rational explanation. Certainly, that sentiment is reflected
in the development of Greek grammar. Numbers, too, had to be derivable in a rational
way from whole numbers, but

√
2 is an irrational number. The Greeks could prove that√

2 was irrational, but they found the conclusion upsetting to the extent that a student of
Pythagoras whose belief in suggesting the validity of the existence of irrational numbers
led, as it was told, to his execution.

The symbol,
√
2, represents a number which is the root of f(x) = x2 − 2. It exists

because f(x) = x2 − 2 is a continuous function over the real numbers, and it is positive
for x=2 and negative for x=1; therefore, somewhere in between one and two, there is a
number, c, such that f(c)=0, and that number is given the symbol

√
2. The numbers,

1.41421 and 1.41422, are close approximations to
√
2 because 1.414212 = 1.999989924

and 1.414222 = 2.000018208. But more importantly, these two approximations bracket√
2; that is 1.41421 ≤

√
2 ≤ 1.41422. By successive approximations of trial and error ad

infinitum, better decimal expansions of
√
2 can be obtained.

Although the cumulative distribution function of the Normal distribution is everywhere
bending, yet, for very small portions of it, a straight line can be used to approximate it.
That line defined by the two known points, (1.22,.88877) and (1.23,.89065), approximates
the Standard Normal cumulative distribution in the vicinity at the point of interest, and it
is drawn in Figure 1. By means of the straight line, it is an easy matter to find the ordinate
for 1.227. Specifically, since the slope of the line is .89065−.88877

1.23−1.22
= y−.88877

x−1.22
, this expression

can be rearranged so that y = .88877 + .89065−.88877
1.23−1.22

(x − 1.22). Therefore, when x=1.227,
y=.890086. From another much different method which is available on a computer, a more
precise answer is: .8900887. Even though the method of linear interpolation easily provides
an approximation, the approximation is still erroneous even by a little amount which is
denoted by the letter, ǫ, in Figure 1. Though it might be an arduous task, it is theoretically
possible, nonetheless, to obtain a numerical value to any degree of precision by successive
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applications of linear interpolation. All numerical techniques produce approximations to
exact values. Though the decimal expansion of π is known to billions of digits and ǫ is
miniscule, it is not an exact value for π. Whenever numerical calculations are made, a
certain estimate of ǫ is given to indicate the precision of the approximation.

There are many other methods besides linear interpolation which are used for inter-
polating; there are the methods of splines, orthogonal polynomials, finite differences, to
name a few, and there is the method of least squares. The appeal of an individual method
depends on the computational resources and requirements of the analyst. A research labo-
ratory with massive computational resources might prefer one method while a small satel-
lite in orbit about the Earth might require another. All of the numerical methods which
have been cited above are used in the analysis of data to some extent, but the method
of least squares which was developed by Frederich Gauss in 1801 commands general use
throughout the experimental sciences and has become an immensely popular statistical
technique.
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Upon making a picture of the data like the one shown on the left in Figure 2, a linear
relationship in the data might readily appear. It suggests that a straight line can be used
to describe the data. The line can only be an approximation as there will always be an
error, ǫi, between the the line and the data point, i. Nonetheless, if the deviation of the
line from the data is small, then it could serve as a good approximation to explain the
data. As illustrated in the diagram shown on the right in Figure 2, at every value of xi,
there exists a deviation, ǫi, between the proposed line and the observed value, yi.
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If there does exist an inherent linear relationship between x and y, the linear relation-
ship should be manifest in the plot of the data. In an attempt to deduce the equation
of that linear relationship, it would seem reasonable to argue that the line which best
fits the experimental data should also be the best candidate to explain the actual linear
relationship. But in what sense does the idea of best fit mean was answered by the brilliant
mathematician Frederich Gauss. Whatever error might be realized in measuring a value
of x, it is presumed to be very small in comparison to the error in measuring a value of
y, so that all the errors in taking measurements are attributed to y, and x is assumed to
be fixed. For every i, the deviation of the observed value, yi from the value of y of the
proposed line should be zero, if there is no error in measuring the data and if the hypoth-
esis that an inherent linear relationship exists between x and y is correct. But error does
exist; no measurement can ever be exact. That line which best fits the data and which is,
therefore, the best estimate of the true line is that one which minimizes the deviations, ǫi.
Unfortunately, it is a vain attempt to minimize the ǫi’s, because the ǫi’s can be negative.
To get rid of the influence of negative deviations, a feasible criterion for finding the best
line stipulates that the line which minimizes the sum of squared errors defines the best
line for explaining the inherent linear relationship of x and y.

2 Response Surface

Definition 1. The sum of squared errors is defined to be: SSE=
n∑

i=1

ǫ2i .

Based on the proposition that x and y are related in a linear way, that is, y = β0+β1x,
an estimate of that linear relationship is made by a line, y = β̂0+ β̂1x, which comes closest

to fitting the data in the sense that it minimizes SSE =
n∑

i=1

ǫ2i . For a given xi which has

been taken from the data, β̂0 + β̂1xi does not exactly equal the observed yi except by the
deviation, ǫi. In other words, β̂0 + β̂1xi + ǫi = yi. Upon rearranging this last expression,
ǫi = yi − β̂0 − β̂1xi. If the hats are removed so that ǫi = yi − β0 − β1xi, then ǫi becomes
a function of β0 and β1 which in turn implies that SSE = (y1 − β0 − β1x1)

2 + (y2 − β0 −
β1x2)

2 + · · ·+ (yn − β0 − β1xn)
2 is also a function of β0 and β1. For every β0 and β1, there

is a different SSE and for that matter a different line. There is an SSE for every line and
there is a line for every SSE. That β0 and that β1 which minimize SSE will define the line,
yi = β̂0 + β̂1xi, which best fits the data. A picture of SSE as a function of β0 and β1 will
make the concept of the method of least squares clearer.
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The graph of SSE as a function of β0 and β1 shows a surface hovering in space. The
surface has the shape of a bowl or a sheet which is suspended by four poles, and it is called
the response surface of the model. Volumes of books have been written on response surface
methodology as some response surfaces exhibit very complicated contours according to the
complexity of the model. In the simple surface shown above, the graph clearly shows that
the bowl has a bottom, a lowest point, a minimum value. Every conceivable straight line
that passes through or about the data corresponds to a single point on the response
surface, and conversely every single point on the response surface corresponds to a line
drawn through the data. That line which minimizes the SSE corresponds to that point
lying at the bottom of the bowl. There is one and only one such point which implies that
there is one and only one line which best fits the data; hence the name: the method of least
squares.

Why not minimize the sum of the absolute value errors, or the least median squared
errors, or the least α quantile squared errors, or the least trimmed squared errors, etc.?
There are, in fact, many criteria for determining that β0 and that β1 which determine the
best fitting line to the data. The one that is chosen depends on the analyst who will arrive
at his opinion after having adequately studied a problem. Among the numerous criteria
which statisticians have advocated over the years, the method of least squares is by far
the nicest one to use, because it admits a relatively easy derivation of simple formulas
for the beta’s. According to calculus, that β0 and that β1 which lie at the bottom of the
bowl correspond to that point at which the tangent plane is horizontal, that is, where
∂SSE
∂β0

= ∂SSE
∂β1

= 0. These equations translate into the following formulas for β̂0 and β̂1.

Theorem 1. The least squares estimators of β0 and β1 are:

1. β̂0 =

(

n∑

i=1

x2
i )(

n∑

i=1

yi)− (

n∑

i=1

xi)(

n∑

i=1

xiyi)

n
n∑

i=1

(xi − x̄)2
= ȳ − β̂1x̄
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2. β̂1 =

n∑

i=1

(xi − x̄)(yi − ȳ)

n∑

i=1

(xi − x̄)2
=

n∑

i=1

xiyi −
(

n∑
i=1

xi)(
n∑

i=1

yi)

n

n∑

i=1

x2
i −

(
n∑

i=1

xi)
2

n

=
SSxy

SSxx

where SSxy =
n∑

i=1

xiyi −
n∑

i=1
xi

n∑
i=1

yi

n
and SSxx =

n∑
i=1

x2
i −

(
n∑

i=1
xi)

2

n
.

In the first item of Theorem 1, a short cut for calculating β̂0 is, also, written. The steps
in calculating β̂0 and β̂1 are:

1. Compute β̂1 =
SSxy

SSxx

2. Compute β̂0 = ȳ − β̂1x̄

Example 1. Six plastic cups are filled with 8 oz. of water each. All cups of water are
allowed to come to room temperature. The first cup of water is heated in a microwave oven
for 5 seconds; the second cup of water is heated for 10 seconds; the third cup of water
is heated for 15 seconds, and so on until the last cup of water is heated for 25 seconds.
After each cup is heated, the final temperature of the water is recorded. The results of the
experiment is shown in the table and graph below.

Time (sec) Temperature (oF )

0 70
5 81
10 92
15 100
20 110
25 118
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It should go without saying that the first order of business is to make a picture of
the data. When the set of data for the microwave experiment is plotted, the trend looks
linear; therefore, it seems reasonable to assert that there is a linear relationship between
temperature and the time spent in heating the water. If we let x denote time and y
denote temperature, then the assertion that a linear relationship exists between x and y
is expressed by: yi = β0 + β1xi + ǫi. Having decided on the linear nature of the model,
performing the calculations begins the next step:

n=6
∑

xiyi = 7975

∑
x2
i = 1375

∑
xi = 75 hence x̄ = 12.5

∑
yi = 571 hence ȳ = 95.1667

SSxx = 1375− 752

6
= 437.5

SSxy = 7975− (75)(571)
6

= 837.5

β̂1 =
837.5
437.5

= 1.914

β̂0 =
571
6

− 1.914(75
6
) = 71.238
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The least squares fit is: ŷ = 71.238 + 1.914x.
The assertion that there exists a linear relation between x and y implies the formula

yi = β0+β1xi+ ǫi. The process of calculating a least squares line requires many arithmetic
computations which are susceptible to errors. A simple arithmetic mistake at any step
in the calculations will lead to a wrong answer. In order to verify the accuracy of the
computations, there is an easy way to check the arithmetic.

Corollary 1.
n∑

i=1

ǫ̂i = 0 where ǫ̂i = yi − ŷi.

Proof.

n∑

i=1

ǫ̂i =
n∑

i=1

(yi − β̂0 − β̂1xi)

=

n∑

i=1

yi − nβ̂0 − β̂1

n∑

i=1

xi
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By definition of the mean, ȳ =

n∑
i=1

yi

n
so that nȳ =

n∑
i=1

yi, Similarly, nx̄ =
n∑

i=1

xi. And since

β̂0 = ȳ − β̂1x̄ can be substituted for β̂0,

n∑

i=1

yi − nβ̂0 − β̂1

n∑

i=1

xi =

n∑

i=1

yi − n(ȳ − β̂1x̄)− β̂1

n∑

i=1

xi

=
n∑

i=1

yi −
n∑

i=1

yi + β̂1

n∑

i=1

xi − β̂1

n∑

i=1

xi = 0

�

Law 1 (Fleming’s Law). Never trust a computer.

One might wonder why in the age of programmable hand calculators and easy access
to computers should the computer’s arithmetic be checked for errors. After having entered
the data into the statistics mode of a calculator or into some statistical software package
on a computer should one not feel confident that the answers will be free of errors? A
naive statistician may feel that way, but a computer scientist and a seasoned statistician
will always verify the answer produced by a computer with a test like Corollary 1 which
is known to be absolutely correct.

There are two principal reasons for fitting a line to the data.

• It is done for the purpose of interpolating.

• It is done to show an inherent relation between the variables.

Whatever evidence is presented to substantiate the claim that a linear relationship be-
tween the variables does exist, it must be cast in the form of confidence intervals. The
use of confidence intervals makes it possible to defend an inference about the relationship.
Otherwise any assertion about the relationship cannot be defended except by political
might, a common practice to be sure but which anyone who subscribes to the principle of
rational persuasion will oppose. Since the method of least squares is strictly a technique
of numerical analysis in which random variables are absent and a fortiori confidence in-
tervals are never mentioned, a way must be devised to introduce a natural property of the
phenomenon into the method of least squares which will account for the randomness found
in experimental data. What separates the field of numerical analysis and statistics is the
utilization of random variables. When statisticians look upon the deviation, ǫi, they see a
variable alluding to an event in which an error of size ǫi has occurred in measuring yi. The
deviation, ǫi, measures the size of that outcome; therefore, in the eyes of a statistician,
ǫi is a random variable which comes with an associated probability distribution which is
characteristic of the phenomenon.

In the theory of linear models, the linear relationship can be formulated in two ways.
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Definition 2.

1. If yi = β0 + β1xi + ǫi is proposed to explain the phenomenon and if yi, xi, and ǫi are
assumed to be random variables, then this model is called a random effects model.

2. If yi = β0 + β1xi + ǫi is proposed to explain the phenomenon and if only yi and ǫi
are random variables and the xi’s are fixed, then this model is called a fixed effects

model. Whatever randomness can be attributed to x is assumed to be negligible.

3 Fixed Effects Linear Model

Dealing with complicated computational demands of random effects models is such an
excruciating experience that the prospects of doing so incline statisticians to avoid them
whenever possible unless they have access to powerful computer programs and they know
how to use them. The relative simplicity of fixed effects models, on the other hand, make
them immensely popular. Computer software for calculating estimates of the parameters of
a linear model is an integral element of any analyst’s tool box. Linear fixed effects models
abound in every facet of experimentation in every discipline. It is definitely a subject worth
studying.

Definition 3. yi = β0 + β1xi + ǫi where ǫi ∼ N(0, σ2) and xi is fixed is called a fixed

effects linear model.

Definition 4. yi is called the response variable; xi is called the independent vari-
able, or the explanatory variable, or the predictor variable.

The following are examples of linear and non-linear models. By linear, it is meant that
the model is linear in the parameters.

Examples of a Linear Model

yi = β0 + β1x
2
i + ǫi where ǫi ∼ N(0, σ2)

yi = β0 + β1cos(xi) + ǫi where ǫi ∼ N(0, σ2)

yi = β0 + β1xi + β2x
2
i + β3x

3
i + ǫi where ǫi ∼ N(0, σ2)

Examples of a Non-linear Model

yi = β0 + (β0xi)
β0 + ǫi where ǫi ∼ N(0, σ2)

yi = β0 + β0xiβ1 + ǫi where ǫi ∼ N(0, σ2)

9



The language of statistics is full of jargon. The word, regression, as in regression anal-
ysis, for instance, is used as a synonym for the method of least squares by many authors
for no clear reason. The origins of this association of regression with the method of least
squares is obscure. Its connotation bears no resemblance to the meaning of regression
which is understood in standard English nor to the Latin root from which it is derived.
Supposedly, this peculiar meaning of regression was culled from the title of the article
written by Francis Galton: “Regression Toward Mediocrity in Heredity Stature” Journal
of the Anthrological Institute vol. 15, 1885, pp. 246-263 in which he utilized the method
of least squares and it has remained a custom ever since. Many other examples of jargon
abound in the statistical profession which prove the popularity of what must seem to be
a puzzling language. In due time, when sufficient understanding of the underlying mathe-
matics has been learned, the jargon can be overcome while acquiring a better appreciation
of the benefits of using precise definitions based on good English. The method of least
squares is one of those phrases found in statistics which has a precise meaning and, when
ǫ is considered to be a random variable, the scope of the method of least squares broadens
from encompassing only interpolation to include a method which admits the construction
of confidence intervals. It is possible to construct confidence intervals in the use of linear
models because the random nature which is ascribed to ǫ propagates through the equations
of Theorem 1 to make β̂0 and β̂1 random variables.

Theorem 2. β̂1 is a random variable.

This claim is obvious because yi is a random variable, and it appears in

β̂1 =

n
n∑

i=1

xiyi − (
n∑

i=1

xi)(
n∑

i=1

yi)

n
n∑

i=1

x2
i − (

n∑

i=1

xi)
2

=
SSxy

SSxx

.

Corollary 2. β̂0 = ȳ − β̂1x̄ a random variable.

Whenever a linear model is proposed, the distribution of ǫi must always be stated, and
it usually is assumed that ǫi ∼ N(0, σ2). Like the notion of randomness, the notion of noise
has an intuitive meaning which is difficult to describe by mathematics. From theoretical
arguments, noise may be modeled as a random variable which is distributed as N(0, σ2).
On that account, because ǫ is meant to explain the random fluctuations in measurements
which will naturally occur in an experiment, ǫ is assumed to follow a Normal distribution
such that E[ǫi] = 0 and var(ǫi) = σ2. If, on the other hand, E[ǫi] 6= 0, then the model
is deficient for it is not accounting for all of the pieces of information which are being
observed about the phenomenon.
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Theorem 3. If yi = β0 + β1xi + ǫi where ǫi ∼ N(0, σ2), then E[yi] = β0 + β1xi.

After calculating β̂0 and β̂1, they can be used in two ways. In the first way, β̂0 and β̂1

can be employed to estimate E[yp] by Ê[yp] = β̂0 + β̂1xp, and in the second way, they can

be used to estimate yp by ŷp = β̂0 + β̂1xp + ǫp.

Definition 5. Ê[yp] = β̂0 + β̂1xp is called the estimated expected value of yp.

That β̂0 and β̂1 are random variables make Ê[yp] = β̂0 + β̂1xp a random variable;
therefore, it has an expectation, and a variance and a probability distribution which is
associated with it.

It should be noted that the notation of authors becomes muddled with regard to Ê[y].

It is not uncommon to see Ê[y] written as ŷ. Confusion arises unless one understands the

author’s reason for using a different convention because the other way of employing β̂0 and
β̂1 is to put them back into the original statement of the model as ŷp = β̂0 + β̂1xp + ǫp, for
the purpose of estimating a particular value of yp. This raises a subtle point which some
statisticians emphasize by calling ŷp a predicted value of yp rather than an estimated value
of yp. In any case, ŷp is also a random variable, and it has associated with it a different
probability distribution.

Definition 6. Let yp = β0+β1xp+ ǫp where ǫp ∼ N(0, σ2), define the predicted value

as ŷp = β̂0 + β̂1xp + ǫp

In summary, both Ê[yp] and ŷp are random variables; each has an expected value and
each has a variance which are tabulated in Table 1.

Table 1

Ê[yp] ŷp

Expected Value E[Ê[yp]] = β0 + β1xp E[ŷp] = β0 + β1xp

Variance var
(
Ê[yp]

)
= σ2

(
1
n
+ (xp−x̄)2

SSxx

)
var (ŷp) = σ2

(
1 + 1

n
+ (xp−x̄)2

SSxx

)

By virtue of ascribing properties of a random variable to ǫi in formulating a model, it

becomes possible to construct the confidence interval. For Ê[yp] and for ŷp, the lower and
upper limits are given in Table 2.
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Table 2: 100(1-α)% Confidence Intervals (a,b)

Ê[yp] = β̂0 + β̂1xp ŷp = β̂0 + β̂1xp + ǫp

a = Ê[yp]− tn−2;α
2
s
√

1
n
+ (xp−x̄)2

SSxx
a = ŷp − tn−2;α

2
s
√

1 + 1
n
+ (xp−x̄)2

SSxx

b = Ê[yp] + tn−2;α
2
s
√

1
n
+ (xp−x̄)2

SSxx
b = ŷp + tn−2;α

2
s
√
1 + 1

n
+ (xp−x̄)2

SSxx

where s2 = sse
n−2

where s2 = sse
n−2

3.5 miles

Firehouse

Example 2. The following excellent example of illustrating the subtle difference in

meanings of Ê[yp] and for ŷp is taken from McClave, et al. The cost in thousands of
dollars of repairing the damage which is caused by a fire is tabulated in Table 3 for fifteen
houses according to the distance a house is from the nearest firehouse. Of course, a picture
of the data must be drawn like the one shown in Figure 3 and placed with the tabulation
of the data.

12



n=15

β̂0 = 10.277929

β̂1 = 4.919331

SSxx = 34.784

SSE=69.75

xp = 3.5
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Figure 3

Table 3

Distance, x Cost, y Predicted ǫ̂2 = Distance, x Cost, y Predicted ǫ̂2 =
miles Cost, ŷ (y − ŷ)2 miles Cost, ŷ (y − ŷ)2

3.4 26.2 27.0 0.64 1.8 17.8 19.1 1.77
4.6 31.3 32.9 2.58 2.3 23.1 21.5 2.27
3.1 27.5 25.5 3.88 5.5 36.0 37.3 1.78
.7 14.1 13.7 0.14 3.0 22.3 25.0 7.48
2.6 19.6 23.0 12.02 4.3 31.3 31.4 0.01
2.1 24.0 20.6 11.50 1.1 17.3 15.6 2.59
6.1 43.2 40.2 8.49 4.8 36.4 33.8 6.29
3.8 26.1 28.9 8.24

Suppose a fire occurred 3.5 miles from a firehouse and that this event actually happened
n times. Let ci=the cost of damage to a house on the ith fire. The sample mean, c̄ =
c1+c2+...+cn

n
is unknown, but we can estimate it by: ̂̄c = Ê[yi] = 10.277929+4.919331(3.5) =

27.4956.
Find the 95% CI about c̄ = E[Ê[yi]]. Based on the data, β̂0 = 10.277929 and β̂1 =

4.919331.
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Before beginning to solve this problem, a glance at Table 2 shows that SSE must be
calculated, in order to construct a confidence interval. There is no easy way to compute
SSE without the aid of a computer for corresponding to each xi, a predicted value of yi
must be computed by means of the equation, β̂0 + β̂1xi. For example, Ê[yi] = 10.277929 +
4.919331(3.5) = 27.0. A listing of predicted values of y is shown in Table 3. The squared
deviations corresponding to each xi are also listed. The first of them is: (26.2−27.0)2 = .64.

The sum of the squared deviations is SSE =
15∑
i=1

ǫ2i = 69.75. According to Table 2, s2 =

SSE
n−2

= 69.75
13

= 5.36546. Now, all the necessary pieces to construct a confidence interval are
ready.

1. α = .05 → α
2
= .025 n=15

2. t13,.025 = 2.160

3. Compute:

(a) Ê[yp] = 10.277929 + 4.919331(3.5) = 27.4956

(b) s2 = sse
n−2

= 69.75
13

= 5.36546 → s = 2.316

(c)
∑

xi = 49.2 → x̄ = 3.28

(d)
∑

x2
i = 196.16

(e) SSxx = 34.784

4. a = 27.4956− 2.160
√
5.36546

√
1
15

+ (3.5−3.28)2

34.784
= 27.4956− 1.3053 = 26.1903.

5. b = 27.4956 + 2.160
√
5.36546

√
1
15

+ (3.5−3.28)2

34.784
= 27.4956 + 1.3053 = 28.8009.

6. 95% CI of the average cost of a fire, E[Ê[y]] = c̄ is (26.1903,28.8009).

Example 3. Same situation as above except that a fire has not yet occurred at 3.5
miles. What is the 95% CI of the cost of the damage to my house. That is: ŷmy house =

β̂0 + β̂13.5 = 10.277929 + 4.919331(3.5) = 27.4956.

1. α = .05 → α
2
= .025

2. t13,.025 = 2.160

3. Use same computations as was used in item 3 of Example 2.

4. a = 27.4956− 2.160
√
5.36546

√
1 + 1

15
+ (3.5−3.28)2

34.784
= 27.4956− 5.17076 = 22.3248
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5. b = 27.4956 + 2.160
√
5.36546

√
1 + 1

15
+ (3.5−3.28)2

34.784
= 27.4956 + 5.17076 = 32.66636.

6. 95% CI of the cost of a particular house is (22.3248,32.6664).

In estimating the average claim, c̄, for a damaged house located at 3.5 miles from a

firehouse by Ê[yi], an insurance company for instance would be estimating the amount of
money it would be paying, on the average, to a community of houses which is situated
that far from a firehouse. Although some claims will be more or less than the average,
an insurance company is interested in the average cost of damage. On the other hand,
an individual is only interested in the cost which he will incur from damage to his house
which lies 3.5 miles from the firehouse. The insurance company is interested in the average
cost, while an individual is interested in a particular cost.

That there is more uncertainty in predicting the cost of the damage to a particular
house than predicting the average cost of damage to a community of houses at the same
distance from the firehouse is a consequence of averaging. The ŷp does not only require the

use of the fitted line β̂0+ β̂1xp which is uncertain in itself, but it depends on the deviation,
ǫp, from the fitted line to the true value of yp.

X     p

pE[Y]
True line

Estimated Line, E[Y]

(

(

Confidence Interval

εp

Expected Value

}

X     p

True line
Yp

Yp

Estimated Line, E[Y]

Confidence Interval

*

(

(

εp

Predicted Value

}

Depicted in the left hand figure shown above, is the relation of the line of the estimated

expected value, Ê[y], to the true line which we are seeking. That same line of the estimated
expected value is used again to estimate a particular yp as shown in the right hand figure.

Although both Ê[yp] and ŷp correspond to the same value because we are using the same
line in both cases to estimate them, the error between ŷp and yp must account for the
additional uncertainly due to yp not lying on the true line, hence the confidence interval

for E[ŷp] is longer than the one for E[Ê[yp]].

Because β̂0 and β̂1 are random variables, they have probability distributions associated
with them as well as expected values and variances. The next theorem gives the explicit
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formulas for the expected values and variances which will play an important practical role
in the final analysis of a linear model which is called the analysis of variance.

Theorem 4.

1. E[β̂0] = β0

2. E[β̂1] = β1

3. var(β̂0) =

σ2

n∑

i=1

x2
i

n
n∑

i=1

(xi − x̄)2
=

σ2

n∑

i=1

x2
i

nSSxx

4. var(β̂1) =
σ2

n∑

i=1

(xi − x̄)2
= σ2

SSxx

5. cov(β̂0, β̂1) = − σ2x̄
n∑

i=1

(xi − x̄)2
= − σ2x̄

SSxx

The covariance of β̂0 and β̂1 which is denoted by cov(β̂0, β̂1) is a measure of how much

β̂0 and β̂1 depend on each other. That cov(β̂0, β̂1) 6= 0 implies that β̂0 and β̂1 are not
independent but correlated. A more detailed discussion of the covariance will occur in a
subsequent statistics course.

There is no short-cut in calculating SSE other than using a computer. Manual computa-
tions of SSE are long and tedious, yet SSE is essential for constructing confidence intervals
and testing hypotheses pertaining to a linear model. By assumption, ǫ ∼ N(0, σ2). The
next theorem gives the unbiased estimator of σ2.

Theorem 5. For a linear fixed effects model with r parameters where SSE = ǫ̂21 +

ǫ̂22 + · · · + ǫ̂2n, σ̂2 = SSE
n−r

is the unbiased estimator of σ2. That is, E[σ̂2] = σ2. Also,

var(σ̂2) = 2(n− r)σ4 and (n−r)σ̂2

σ2 ∼ X2
n−r.

Corollary 3. For a linear model with two parameters, σ̂2 = SSE
n−2

.

Definition 7. The distribution, X2
n, is pronounced, chi-squared.
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The X2 distribution owes its origins to the Standard Normal distribution. Specifically,

if zi ∼ N(0, 1), then z2i ∼ X2
1 . More generally, if Z2 =

n∑
i=1

z2i then Z2 ∼ X2
n, that is, X

2
n is

generated by a sum of n Standard Normal distributions that are squared. The probability
density function of a X2

n distribution is:

f(x) =
1

Γ(n
2
)2

n
2

x
n
2
−1e−

x
2

Theorem 6. E[X2
n] = n and var(X2

n) = 2n.

Chi-squared X2
n

E[X2
n] = n

var(X2
n) = 2n

We will use the X2 distribution extensively in the chapter on goodness-of-fit.
A confidence interval for a parameter is constructed for the purpose of substantiating

an inference about the parameter from a set of experimental data. Since β̂0 and β̂1 are
random variables, they each follow a probability distribution, and consequently it is possi-
ble to construct confidence intervals about them. All the formulas for β0 and β1 which we
are about to present here pertain to a two parameter model. They are sufficient for our
purposes to introduce the theory of linear models. However, more elaborate formulas in-
volving matrices are required for general linear models. They are derived using the theory
of linear algebra and will appear in subsequent statistics courses.

Theorem 7. For β̂0, the lower and upper limits of the 100(1-α)% confidence interval
are:

a = β̂0 −
stn−2,α

2

√∑
x2
i√

nSSxx

b = β̂0 +
stn−2,α

2

√∑
x2
i√

nSSxx

where s =
√

SSE
n−2

Theorem 8. For β̂1, the lower and upper limits of the 100(1-α)% confidence interval
are:
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a = β̂1 −
stn−2,α

2√
SSxx

b = β̂1 +
stn−2,α

2√
SSxx

Example 4. Let us return to the example of measuring the temperature of water versus
time after it was heated in a microwave oven found on page 6.

β̂0 = 71.238 and β̂1 = 1.914 so that Ê[yp] = 71.238 + 1.914xp.

Table 4

Time (sec) Temperature (oF ) Ê[yi] ǫ̂i = yi − ŷi ǫ̂i
2 = (yi − ŷi)

2

0 70 71.238 −1.238 1.5326
5 81 80.810 +.190 .0361
10 92 90.381 +1.619 2.6212
15 100 99.952 +.048 .0023
20 110 109.524 +.476 .2266
25 118 119.095 −1.095 1.1990

Total 0 5.6178

A tabulation of the predicted values and the residuals of the microwave model appear

in Table 4 Since
6∑

i=1

ǫ̂i = 0, the arithmetic appears to be correct.

It is not enough to assert a model for explaining the data. It must be a good model;
one which can be defended. Collecting data is difficult and expensive. The analysis of the
data is easy with the use a computer. Performing diagnostics of the model is technically
very difficult. A common technique to assess the validity of a model is to make a plot of
the residuals versus predicted values.

Definition 8. ǫ̂i = yi − β̂0 − β̂1xi is called a residual of the fitted model.

• If there is no pattern in the plot of the residuals versus predicted values like that
appearing in Figure 4, then the ǫi’s are evidently random, and the plot therefore
substantiates the assumption that ǫi represents random noise which ǫi ∼ N(0, σ2)
implies.

• On the other hand, if there is a discernible pattern in the plot of the residuals versus
predicted values, then the assumption that ǫi ∼ N(0, σ2) is not valid and the model
is fundamentally flawed.
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The plot of residuals versus predicted values for the microwave experiment displayed
in Figure 4 shows a random pattern, as a result the proposed model shows promise. Three
aspects of a model must be examined when determining if a model is good one.

1. The plot of the data must show a conspicuous linear relationship between x and y,
i.e. β1 6= 0.

2. The plot of residuals versus predicted values must exhibit a random pattern.

3. The theoretical derivation of the model for describing the phenomenon of concern
must be defensible.

4. Reject H0 : β1 = 0 vs H1 : β1 6= 0

Suppose a plot of residuals versus predicted values from a different experiment like the
one shown in Figure 5 exhibits an obvious pattern, then we must conclude that whatever
model is being proposed, it is seriously flawed.

Simply reporting values for β̂0 and β̂1 is not enough. They ought to be accompanied
with their respective confidence intervals.

Problem 1. Find 95% CI about β̂0.

1. α = .05 → α
2
= .025 and n=6

2. tn−2,α
2
= t4,.025 = 2.776

3.
∑

x2
i = 1375 and SSxx = 437.5 were already calculated.

4. σ̂2 = SSE
n−2

= 5.6178
4

= 1.40445 since
∑

ǫ̂i
2 = 5.6178

5. a = β̂0 −
stn−2, α2

√∑
x2
i

√

nSSxx
= 71.238− 1.185

√

1375√
6(437.5)

2.776 = 68.86

6. b = β̂0 +
stn−2, α2

√∑
x2
i

√

nSSxx
= 71.238 + 1.185

√

1375√
6(437.5)

2.776 = 73.62

7. 95% CI for β0 = (68.86, 73.62)

Problem 2. Find 95% CI about β̂1.

1. α = .05 → α
2
= .025 and n=6

2. tn−2,α
2
= t4,.025 = 2.776

3.
∑

x2
i = 1375 and SSxx = 437.5 were already calculated.
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4. σ̂2 = SSE
n−2

= 5.6178
4

= 1.40445 since
∑

ǫ̂i
2 = 5.6178

5. a = β̂1 −
stn−2, α2√

SSxx
= 1.914− 1.185

√

437.5
2.776 = 1.7567

6. b = β̂1 +
stn−2, α2√

SSxx
= 1.914 + 1.185

√

437.5
2.776 = 2.0713

7. 95% CI for β1 = (1.7567, 2.0713)

Question 1. Is 0 ∈ (1.7567, 2.0713)? No.

This question brings to mind the equivalence of confidence intervals and testing of
hypotheses. It suggests the idea of testing hypotheses about β̂0 and β̂1.

Problem 3. Test H0 : β0 = 71 vs H1 : β0 6= 71 at α = .05

1. Is 71 ∈ 95% CI for β0 i.e. is 71 ∈ (68.86, 73.62)?

2. Yes, therefore, cannot reject the null hypothesis.

Problem 4. Test H0 : β1 = 0 vs H1 : β1 6= 0 at α = .05

1. Is 0 ∈ 95% CI for β1 i.e. is 0 ∈ (1.7567, 2.0713)?

2. No, therefore, reject the null hypothesis.

No one really cares about β0. In sharp contrast, however, the confirmation of whether
or not β1 = 0 is crucial. If the null hypothesis that β1 = 0 cannot be rejected, then by
implication, the proposition that there exits an inherent linear relationship of y with x
is false. If β1 = 0, then, no matter what x might be, y is unaffected. That is, no matter
how long a microwave oven is used to heat a cup of water, the temperature of the water
will always stay at room temperature. If β1 = 0, then the microwave oven will be deemed
useless. An experimenter is probably hoping that, according to his thesis, β1 6= 0 in order
to demonstrate that there does indeed exist a linear relationship between the explanatory
and response variables. The fact that 0 /∈ 95% CI for β1 in the microwave oven experiment
demonstrates that the temperature does depend on the length of time that the microwave
oven is turned on.

Numerical computations are lengthy and tedious when estimating β0 and β1, and for
that reason among others, it is imperative to draw a picture of the data before commencing
with the computations. Regardless of the theory and personal expectations, one must use
common sense in evaluating a model. For instance, the predicted temperature of the water
if it is heated in a microwave oven for 2 minutes (120 seconds) according to the fitted line
is 71.283 + 1.914(120) = 301oF , but this is impossible. The lesson to be learned is that
the method of least squares is a technique which comes from numerical analysis, and it is
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best used in the problem of interpolating, not in extrapolating. The use of linear models
is valid only within the scope of the data; otherwise, ridiculous results might be produced
as in the case of our model which would make the preposterous prediction that after five
days of heating, the final temperature of the water will be 826, 929oF .

4 Analysis of Variance

The test of hypothesis, H0 : β1 = 0 vs H1 : β1 6= 0 at α = .05 is a special case of testing
the hypothesis of a general formulation of linear models in which there could be many more
parameters besides the two which we have examined. Models could have β2, β3, . . . βr−1

as parameters so that the way to test the hypothesis that there is no linear effect must be
answered by: H0 : β1 = β2 = . . . = βr−1 = 0 vs. H1 : at least one βk 6= 0 where r is
the number of parameters. Thus far, we have been dealing with linear models having two
parameters, β0 and β1, therefore r=2. For the more general model, a more sophisticated
technique must be used to test the hypothesis. The implementation of this generalized
technique is greatly facilitated by means of the analysis of variance table shown below.

The analysis of variance table shown in Table 5 is applicable to the analysis of variance
for any linear model, whereas, in Table 6, the analysis of variance applies only to a two-
parameter model, and that is the one which we will use.

Ronald Aylmer Fisher
1890-1962
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Table 5: Analysis of Variance for Fitting Regression for the General Linear
Model

Source of Variation df Sum of Squares Mean Sum of Squares F statistic

Mean 1 SSM = nȳ2

Regression r-1 SSR(m) = β̂
′
X

′
Y − nȳ2 MSSR =

SSR(m)

r−1
F = MSSR

MSSE

Residual Error n-r SSE=SST-SSM-SSR(m) σ̂2 = MSSE = SSE
n−r

Total n SST =
n∑

i=1

y2
i

Table 6: Analysis of Variance for Fitting Regression for Two Parameters

Source of Variation df Sum of Squares Mean Sum of Squares F statistic

Mean 1 SSM = nȳ2

Regression 1 SSR(m) = β̂1SSxy MSSR = SSR(m) F = MSSR
MSSE

Residual Error n-2 SSE=SST-SSM-SSR(m) σ̂2 = MSSE = SSE
n−2

Total n SST =
n∑

i=1

y2
i

The only substantial difference in these two tables is the entry for SSR. In the general
case, SSR is expressed in terms of the design matrix, X, and the vectors β̂ and Y. In the
simple case in which there are only two parameters, the expression for SSR simplifies to
β̂1SSxy which can be easily computed even by hand.

Definition 9. Fr−1,n−r;α is a quantile of the F distribution with r-1 and n-r degrees
of freedom.

The criterion for testing the hypothesis, H0 : β1 = β2 = . . . = βr−1 = 0 vs.
H1 : at least one βk 6= 0 at the level of significance, α, appears in the accompanying table:

H0 Test Statistic H1 Reject When

β1 = β2 = . . . = βr−1 = 0 F βk 6= 0 F > Fr−1,n−r;α

For a two-parameter model, r=2 and the criterion for rejecting null hypothesis is:
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H0 Test Statistic H1 Reject When

β1 = 0 F β1 6= 0 F > F1,n−2;α

The F distribution has two degrees of freedom, ν1 and ν2, and it is written as Fν1,ν2. A
tabulation of F quantiles for α = .05 is given in Appendix 6.

The F distribution, like the X2 distribution owes its origins to the Standard Normal

distribution via the X2 distribution. Specifically, if X ∼ X2
ν1

and Y ∼ X2
ν2
, then

(
X

ν1

)

(
Y

ν2

) ∼

Fν1,ν2. The probability density function for F is:

f(x) =
Γ(ν1+ν2

2
)(ν1

ν2
)
ν1
2

Γ(ν1
2
)Γ(ν2

2
)

x
ν1
2
−1

(1 + ν1
ν2
x)

ν1+ν2
2

The F test statistic was named by George Snedecor in 1934 to honor Ronald Fisher.

Fν1,ν2

E[Fν1,ν2] =
ν2

ν2−2

var(Fν1,ν2) =
2ν2(ν1+ν2−2)

ν1(ν2−1)2(ν2−4)
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Example 5 (Analysis of Variance of the Model for the Microwave Data).

Source of Variation df Sum of Squares Mean Sum of Squares F statistic

Mean 1 6(95.1667)2=54340.17

Regression 1 1.914(837.5)=1603.215 1603.215 F=1142

Residual Error 4 55949-54340.17-1603.215=

5.615 s2 = 1.40375

Total 6
6∑

i=1

y2
i = 55949

We demonstrated in Problem 4 on page 21 that because the confidence interval for β1

did not contain zero, the hypothesis that β1 = 0 was rejected. The same conclusion
may be made by means of the ANOVA table.

1. α = .05

2. F1,4;.05 = 7.71

3. Is F = 1142 > 7.71? Yes, therefore reject the null hypothesis.

The important quantity, s2, which was computed in Table 4 on page 18 is the same
quantity as that which appears in the ANOVA table. The slight difference in these two is
due to round-off error.

Definition 10. Coefficient of determination is: R2 = 1− SSE
SSyy

.

The coefficient of determination, R2, is a popular quantity made mentioned in meetings
during which a critique of a model is often made. Someone will claim that because R2 is
high, his model is good, while another might complain that R2 is not high enough to
justify accepting the model. The diagnostics, the analysis of variance for testing the null
hypothesis that β1 = 0, the theoretical derivation of the model, and the plot of the data
provide the means of making a good defense or a good attack on a proposed model.
Although R2 has some merits, as a general rule, it is better to avoid getting involved in a
discussion in which R2 is used to justify or discredit a model.

5 Simultaneous Comparison of Multiple Means

If two confidence intervals do not overlap, then we conclude that the means around which
the confidence intervals were constructed are significantly different at a specified level of
significance. Instead, if they do overlap, then, for practical purposes, the means of the pop-
ulations are not different. When three or more means need to be compared, the problem
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cannot be reduced to one of comparing the geometric position of multiple confidence inter-
vals because we must enter higher dimensions where a geometric interpretation becomes
infeasible.

Table 7: Models Associated with Four Populations

Population Model

1 y1j = β01 + ǫ1j where ǫ1j ∼ N(0, σ2
1)

2 y2j = β02 + ǫ2j where ǫ2j ∼ N(0, σ2
2)

3 y3j = β03 + ǫ3j where ǫ3j ∼ N(0, σ2
3)

4 y4j = β04 + ǫ4j where ǫ4j ∼ N(0, σ2
4)

Instead a trick is used to make a simultaneous comparison of multiple means. The
trick employs the method of least squares. The simple model, yj = β0 + β1xj + ǫj where
ǫj ∼ N(0, σ2), had been used to determine whether or not an inherent relationship between
x and y exists. The answer to that question is determined by testing the hypothesis:
H0 : β1 = 0 vs H1 : β1 6= 0 at some level α. If the null hypothesis can be rejected, then
we may conclude that β1 6= 0 and that an inherent relationship does exists between x and
y. Suppose that the response variable does not change regardless of the value of xi, then
obviously the line is flat and hence β1 = 0. In this case, the model simplifies to: yj = β0+ǫj
where ǫj ∼ N(0, σ2). The model now appears almost too trivial to be of any use, but, as
we shall soon see, this model will be very useful.

To prevent any confusion in notation which might possibly occur later due to imprecise
correspondences between models and their respective populations, we will introduce an-
other subscript to the variables such that a model will be clearly associated with a certain
population as in: y1j = β01+ ǫ1j where ǫ1j ∼ N(0, σ2

1) for population 1. Similarly, the same
formulation will be applied to other distinct populations like those listed in Table 7.

Before we simplify the notation any further, we should observe that the symbol, β0,
appears in each model, and we should note that when β1 = 0, the formula, β̂0 = ȳ−β̂1x̄, for

estimating β̂0 reduces to β̂0 = ȳ, where ȳ =

n∑
j=1

yj

n
. If measurements are made on subjects

of population 1, then this formula should be associated with population 1 and that is done

by incorporating another subscript into the name such as β̂01 = ȳ1. =

n1∑
j=1

y1j

n1
= y1.

n1
. The dot

which appears in the subscript of ȳ1. signifies that the sum has been taken over the second
index, j. The pattern can be extend to two indices as in y.. which would be interpreted as,
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Table 8: Analysis of Variance

Source of Variation df Sum of Squares Mean Sum of Squares F statistic

Mean 1 SSM = nȳ2
..

Regression k-1 SSR =
k∑

i=1

ni(ȳi.− ȳ..)2 MSSR = SSR
k−1

F = MSSR
MSSE

Residual Error
k∑

i=1

ni-k SSE =
k∑

i=1

ni∑
j=1

(yij − ȳi.)
2 σ̂2 = MSSE = SSE

n−k

Total
k∑

i=1

ni SST =
k∑

i=1

ni∑
j=1

y2
ij

n =
k∑

i=1

ni and ni is the size of the sample which was drawn from population i, and k is the number of populations.

H0 is rejected if F > Fk−1,n−k,α.

y.. =
k∑

i=1

n∑
j=1

yij, and y... =
k∑

i=1

n∑
j=1

m∑
l=1

yijk, and so on. ȳ1. is nothing more than the sample

mean from population 1. If ȳ1. denotes the sample of population 1, then µ1 will denote the
population mean for population 1. With β̂01 = ȳ1. in the sample case, it would appear that
β01 = µ1 in the case of the population. We have been using µ to denote the population
mean; therefore, it is appropriate to replace β0 with µ and write the generic model for
population, i, and observation, j, as, yij = µj + ǫij where ǫij ∼ N(0, σ2

i ). The sample mean

for population i is ȳi. =

n1∑
j=1

yij

n1
; the grand sample mean is denoted by ȳ.. =

k∑
i=1

ni∑
j=1

yij

k∑
i=1

ni

.

Table 9: Data for Job Satisfaction

Population Education Job Satisfaction ni

ni∑
j=1

yij ȳi.

1 Ph.D. 6 5 2 1 7 7 6 7 34 4.85

2 Masters 7 7 5 6 6 5 3 5 3 6 6 5 7 6 6 7 6 6 7 6 20 115 5.75

3 College 6 7 7 5 6 7 7 7 7 6 6 1 6 6 14 84 6

4 High School 5 6 1 5 5 6 7 1 4 9 40 4.44

Total 50 273 5.46
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The problem of determining whether µ1 = µ2 = µ3 = µ4 can now be framed in
terms of a linear model by which we may test the hypothesis: H0 : µ1 = µ2 = µ3 =
µ4 vs H1 : otherwise for a specified α. By first referring to the ANOVA table for the
general case, a simplified ANOVA table for comparing four means will be constructed.
ANOVA Table 8 shows the formulas for the general case when testing the hypothesis
H0 : µ1 = · · · = µk vs H1 : otherwise at a specified level of α.

Example 6. A clinical sociologist wants to know if there is a difference in job satisfac-
tion according to level of education. The accompanying tabulation of data was taken from a
survey of 50 people of both sexes in Washington, D.C.. Given the data for job satisfaction
(1=lowest and 7=highest) and level of education in Table 9. The sociologist wants to test
the hypothesis

H0 : µ1 = µ2 = µ3 = µ4 vs H1 : otherwise

at a level of significance α = .05.
To that end, we note that ȳ.. =

273
50

= 5.46 and compute the various sums of squares.

SST = 62 + 52 + 22 + . . .+ 72 + 12 + 42 = 1637

SSM = 50(5.46)2 = 1490.58

SSR = 7(4.85− 5.46)2 + 20(5.75− 5.46)2 + 14(6− 5.46)2 + 9(4.44− 5.46)2 ≈ 17.59

SSE=SST-SSM-SSR or

SSE = (6−4.85)2+(5−4.85)2+(2−4.85)2+. . .+(7−4.44)2+(1−4.44)2+(4−4.44)2 ≈ 128.82

1. α = .05

2. F3,46,.05 = 2.806845 From a computer.

3. F=2.0936 from the ANOVA table.

4. Is 2.0936 > 2.806845? No

5. Cannot reject null hypothesis. According to the data, the means of the four popu-
lations are, for all practical purposes, the same. Based on the sociologist’s survey,
there appears to be no difference in job satisfaction according to education.

The previous example in which H0 : µ1 = µ2 = µ3 = µ4 vs H1 : otherwise was tested
for a specified α should remind us of the problem of comparing two means which was
addressed in the discussion beginning on page 15 of Testing Hypotheses. In that chapter,
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the T test statistic was used in the test of the hypotheses:
H0 : µ1 = µ2 vs H1 : µ1 6= µ2.

T =
x̄2 − x̄1

Sp

√
1
n1

+ 1
n2

where S2
p =

(n1−1)s21+(n2−1)s22
n1+n2−2

Table 10: Analysis of Variance

Source of Variation df Sum of Squares Mean Sum of Squares F statistic

Mean 1 1490.58

Regression 4-1=3 17.5906 5.863533 2.0936

Residual Error 50-4=46 128.8294 2.80064

Total 50 1637

This expression for the T test statistic will be shown to come from the Analysis of
Variance of a linear model. It will be shown that the F test statistic found in the ANOVA
table is equivalent to the T test statistic which was used in testing the difference of two
means. Assume that X1j are i.i.d., X1j ∼ N(µ1, σ

2
1), X2j are i.i.d., and X2j ∼ N(µ2, σ

2
2).

The criterion for testing the hypothesis regarding the difference of two means which was
discussed in Testing Hypothesis, the formula for the T test statistics was merely presented
without any explanation as to its origins. This time, we will derive the test for comparing
two means by formulating the problem as a linear model:

y1j = µ1 + ǫ1j where ǫ1j ∼ N(0, σ2
1)

y2k = µ2 + ǫ2k where ǫ2k ∼ N(0, σ2
2) (1)

where j denotes any one of the observations from population 1 and k denotes any one
of the observations from population 2. The number of y1j’s might be different from the
number of y2k’s. Also, the ǫ1j ’s follow a different distribution from the ǫ2k’s.

In as much as the definitions of y1j and y2k seem to bear little resemblance to X1j

and X1j, their respective distributions are the same. To show this we will rely on the
properties of the Normal distribution. It is easy to show that y1j is the same as the random
variables X1j used in Testing Hypotheses. In line with the first property which states that
if X ∼ N(µ, σ2), then aX + b ∼ N(aµ + b, a2σ2), we will assign ǫ1j ∼ N(0, σ2

1), a=1, and
b = µ1, from which we may conclude that the distribution of ǫ1j + µ1 ∼ N(µ1, σ

2
1) which
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is the same distribution of X1j . The formulation of the problem of comparing two means
by a linear model is, therefore, justified as claimed.

We will modify the entries of the Analysis of Variance Table 8 accordingly by reducing
the number of means from four to two.

SSM = nȳ2.. = (n1 + n2)
(

n1ȳ1+n2ȳ2
n1+n2

)2

SSR =
k∑

i=1

ni(ȳi. − ȳ..)
2 = n1(ȳ1. − ȳ..)

2 + n2(ȳ2. − ȳ..)
2 = (ȳ1.−ȳ2.)2

1
n1

+ 1
n2

SSE =
k∑

i=1

ni∑
j=1

(yij − ȳi.)
2 =

n1∑
j=1

(y1j − ȳ1.)
2 +

n2∑
k=1

(y2k − ȳ2.)
2 = (n1 − 1)s21 + (n2 − 1)s22

With additional algebraic simplifications, all the other sums of squares are shown in
the ANOVA Table 11 for the model given in equation (1).

Table 11: Analysis of Variance

Source of Variation df Sum of Squares Mean Sum of Squares F statistic

Mean 1 (n1 + n2)(
n1 ȳ1+n2 ȳ2

n1+n2
)2

Regression 1 (ȳ1.−ȳ2.)
2

1
n1

+ 1
n2

(ȳ1.−ȳ2.)
2

1
n1

+ 1
n2

(ȳ1.−ȳ2.)
2

S2
p

(

1
n1

+ 1
n2

)

Residual Error n1 + n2 − 2 (n1 − 1)s21 + (n2 − 1)s22
(n1−1)s21+(n2−1)s22

n1+n2−2
= S2

p

Total n1 + n2 SST =
n1∑
j=1

y2
1j +

n2∑
j=1

y2
2j

Since the symbol, y, is arbitrary and, in order to give the equations a look which
will agree with our customary use of notation, the symbol, x, will be used instead of
y . To draw the equivalence between the test obtained from the linear model approach
as expressed in the ANOVA Table 11 and the test of two means given on page 17 of
Testing Hypotheses to completion, we invoke a relation between the F and the Student’s t
distributions. From an advanced course of mathematical statistics it can be proved that,
F1,ν2,α = (tν2,α2 )

2; therefore, the F test statistic which appears in the ANOVA table can be

written as: T 2 = F = (x̄1.−x̄2.)2

S2
p(

1
n1

+ 1
n2

)
. By taking the square root, T = (x̄1.−x̄2.)

Sp

√
1
n1

+ 1
n2

which exactly

is the same test statistic that was used in Testing Hypotheses. Besides showing the origins
of the test statistic, the ANOVA table, also, shows the origins of the formula for S2

p , the

degrees of freedom, and the peculiar factor
√

1
n1

+ 1
n2
.
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6 Paired Difference Test

In another illustration of employing the method of least squares for providing a concise
derivation of a statistic, we will examine the origins of the paired difference test. The
paired difference test and the test for comparing the means of two populations appear to
be very similar. The similarity between them is close enough to cause confusion. When
should a paired difference test be used or the test for comparing two means be used is a
common question. The dilemma in deciding which test to use can be traced to the design
of the experiment from which the set of data was obtained.

The population consists of those things which possess the information which is being
sought. The definition of a population is completely arbitrary and is made according to
the interests of the experimenter. For example, he might be interested in verifying that
a treatment of his own design in curing a disease is significantly more effective on an
element of the population than if the subject received no treatment at all. The defining
characteristic for a paired difference test is that a subject of a population is measured twice;
once before the treatment is administered and again afterwards. For example, consider the
population of middle aged women who reside in the same affluent suburb in America and
who wish to loose weight. An experiment could be designed by which eight women are
selected at random and enrolled in an aerobics class under the presumption that supervised
exercise will result in a healthy weight loss. If loss of weight is the matter of concern, then
it would be natural to expect that they ought to be weighed before and again at the
conclusion of the class. In this experiment, the weight of each woman is to be measured
twice, in order to determine if the treatment of doing disciplined aerobic exercises under
the direction of an instructor will in fact reduce her weight.
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Table 12: Weights of Women Before and After Aerobic Exercise Program

ID Before After d

1 198 194 4

2 154 151 3

3 124 126 -2

4 110 104 6

5 127 123 4

6 162 155 7

7 141 129 12

8 180 165 15

Mean 149.5 143.4 6.125

A picture of the data is helpful in seeing the design of the experiment. There is a
pair of measurements for each subject. In most of the cases as illustrated in Figure 6, the
weight of a participant before the exercise program, B, is usually greater than the weight
at the completion of the program, A. It is suggested in the picture that by engaging in the
exercise program, a loss of weight does occur.

Intuition will lead one to suspect that if the regimen is successful, then each woman
will observe a loss of weight. The researcher realizes that some losses will be more than
others, but, taking that into account, he will want to demonstrate that differences in
weights before and after the class are not due to mere chance but are actually a product
of exercising. Each difference can be associated with a random variable, di. Reminiscent
of the discussion of paired difference test found on page 14 of Testing Hypotheses, the
researcher will undoubtedly test the hypothesis: H0 : µd = 0 vs H1 : µd 6= 0 at a level
of significance α. Based on the data, he will compute the T test statistic, T = d̄

s√
n

and

compare it against the appropriate t quantile.
When the second picture, Figure 7, is examined, one sees at once that the test for com-

paring two means necessarily includes information about the distribution of all weights.
The horizontal solid line represents the average of the weights which were taken before
the aerobics course, and the dashed horizontal line is the average of the weights which
were taken after completing the course. Both averages include every one’s weight: those
who were light as well as those who were heavy. Even though the set of weights appears
as two halves with each half having a mean, the weights ranging from heavy women to
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light women are intermingled in each mean, as a result, it is impossible to disassociate
the distribution of weights of the whole group of women from any possible effect which
the aerobic exercising might have had on a particular subject. By formulating the prob-
lem in such a way as to study paired differences, on the other hand, it is possible to
make the differences independent of the other the subjects and to ignore the distribution
of weights which would otherwise introduce undesirable confounding of information. The
second picture, also, shows that the measurements are taken from subjects not of two
populations but of only one population. In the design of an experiment for paired differ-
ences, all measurements are taken from subjects of the same population. Each individual
subject is measured once before a treatment is applied and again after the application of
the treatment; therefore, the test for comparing the means of two populations is actually
inappropriate when ascertaining the effectiveness of a treatment on a population. It is
appropriate for the researcher, in this example, to design the experiment with a paired
difference test in mind.

To arrive at a test statistics for a paired difference test, the following linear model is
used:

yi = µ1 − µ2 + ǫi where ǫi ∼ N(0, σ2) (2)

With this model as a basis, an experiment is designed such that a subject is measured
twice and that all other subjects which are examined experience similar conditions. If, for
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example, in the aerobics class, one woman had lost weight as a result of having underwent a
serious surgical procedure, a well designed experiment would not include her in the sample
because the condition which caused her loss of weight is not shared by the other women
of the class.

The linear model which is expressed in equation (2) was conceived for the purpose of
examining paired differences. It cannot be used to compare the means of two populations.
Conversely, the linear model given by equation (1) for comparing two means cannot be
used to examine pair differences. According to the model for comparing two means, there
are two different populations, as implied by two differently distributed ǫ’s, however, in the
paired difference case, there is only one population, one distribution for ǫ, and one sample
in which each element is measured twice: once before a treatment has been administered
and again afterwards. It should be noted that there is no x term in the model, consequently
there is no β1. That is, β1 is identically zero at the very beginning, and there will not be
a row in the ANOVA table for it.

For testing the hypothesis: H0 : µD = 0 vs H1 : µD 6= 0 where µD = (µ1 − µ2) at a
level of α, the ANOVA table given in Table 8, reduces to the following:

34



Table 13: Analysis of Variance of a Linear Model for Paired Differences

Source of Variation df Sum of Squares Mean Sum of Squares F statistic

Mean 1 SSM = nd̄2 MSSM = nd̄2 F = nd̄2

s2
= d̄2

s2

n

Residual Error n-1 SSE =
n∑

i=1

(di − d̄)2 MSSE =

n
∑

i=1
(di−d̄)2

n−1
= s2

Total n SST =
n∑

i=1

d2ij

It was noted before that co-incidentally, F1,ν2,α = (tν2,α2 )
2 and, as a result, the F test

statistic which appears in the ANOVA table for the paired difference experiment can be
written in terms of T, that is, T 2 = F = d̄2

s2

n

. By taking the square root, the T test statistic

which was derived from the ANOVA table for a paired difference experiment is exactly
the same test statistic for paired differences which was used in section of paired difference
test found in Testing Hypotheses.

According to the set of data regarding the differences in the weights of eight women
who took an aerobics exercise class, the leader of the class wants to verify that the course
did indeed bring about a loss of weight for a participant, and she wants the verification
to be wrong with a probability no greater than .05. From the set of eight differences in
weights, the analysis of the data produced the ANOVA Table 14

Table 14: Analysis of Variance for Paired Differences in Weights

Source of Variation df Sum of Squares Mean Sum of Squares F statistic

Mean 1 8(6.125)2=300.125 300.125 F = 300.125
28.41071

= 10.56380

Residual Error 7 198.875 28.41071

Total 8 499

Since F = 10.56380 > F1,7,.05 = 5.59145, the null hypothesis that no loss of weight
occurred can be rejected at a level of significance, α = .05. When the criterion for rejecting
the null hypothesis which is derived from the linear model formulation of paired differences
is compared to the corresponding criterion which was used in discussion of the paired
difference test presented in Testing Hypotheses, both arrive at the same conclusions because
the criteria are actually the same. For the paired difference test, T = d̄

s√
n

= 6.125√
28.4107

8

=

3.250199 and t7,.025 = 2.36462 and since T = 3.250199 > t7,.025 = 2.36462, H0 : µd = 0
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can be rejected at a level of significance, α = .05. The criteria are the same because
T 2 = 3.2501992 = 10.56380 = F and t27,.025 = 2.364622 = 5.5914 = F1,7,.05.

The formulation of the comparison of two means and the formulation of paired differ-
ences in terms of linear models illustrate the versatility of the method of least squares,
and they help illustrate the reason why linear models enjoy such immense popularity. By
means of linear models, it is possible to solve many problems more easily. A case in point
is the preceding study of the paired difference test and the comparison of means. By using
linear models, it is easy to see that the two tests correspond to two fundamentally different
situations.
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Cumulative Probabilities for a N(0,1) Distribution: Φ(z)− .5

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.00000 0.00399 0.00798 0.01197 0.01595 0.01994 0.02392 0.0279 0.03188 0.03586
0.1 0.03983 0.04380 0.04776 0.05172 0.05567 0.05962 0.06356 0.06749 0.07142 0.07535
0.2 0.07926 0.08317 0.08706 0.09095 0.09483 0.09871 0.10257 0.10642 0.11026 0.11409
0.3 0.11791 0.12172 0.12552 0.12930 0.13307 0.13683 0.14058 0.14431 0.14803 0.15173
0.4 0.15542 0.15910 0.16276 0.16640 0.17003 0.17364 0.17724 0.18082 0.18439 0.18793
0.5 0.19146 0.19497 0.19847 0.20194 0.20540 0.20884 0.21226 0.21566 0.21904 0.22240
0.6 0.22575 0.22907 0.23237 0.23565 0.23891 0.24215 0.24537 0.24857 0.25175 0.25490
0.7 0.25804 0.26115 0.26424 0.26730 0.27035 0.27337 0.27637 0.27935 0.28230 0.28524
0.8 0.28814 0.29103 0.29389 0.29673 0.29955 0.30234 0.30511 0.30785 0.31057 0.31327
0.9 0.31594 0.31859 0.32121 0.32381 0.32639 0.32894 0.33147 0.33398 0.33646 0.33891
1.0 0.34134 0.34375 0.34614 0.34849 0.35083 0.35314 0.35543 0.35769 0.35993 0.36214
1.1 0.36433 0.36650 0.36864 0.37076 0.37286 0.37493 0.37698 0.37900 0.38100 0.38298
1.2 0.38493 0.38686 0.38877 0.39065 0.39251 0.39435 0.39617 0.39796 0.39973 0.40147
1.3 0.40320 0.40490 0.40658 0.40824 0.40988 0.41149 0.41309 0.41466 0.41621 0.41774
1.4 0.41924 0.42073 0.42220 0.42364 0.42507 0.42647 0.42785 0.42922 0.43056 0.43189
1.5 0.43319 0.43448 0.43574 0.43699 0.43822 0.43943 0.44062 0.44179 0.44295 0.44408
1.6 0.44520 0.44630 0.44738 0.44845 0.44950 0.45053 0.45154 0.45254 0.45352 0.45449
1.7 0.45543 0.45637 0.45728 0.45818 0.45907 0.45994 0.46080 0.46164 0.46246 0.46327
1.8 0.46407 0.46485 0.46562 0.46638 0.46712 0.46784 0.46856 0.46926 0.46995 0.47062
1.9 0.47128 0.47193 0.47257 0.47320 0.47381 0.47441 0.47500 0.47558 0.47615 0.47670
2.0 0.47725 0.47778 0.47831 0.47882 0.47932 0.47982 0.48030 0.48077 0.48124 0.48169
2.1 0.48214 0.48257 0.48300 0.48341 0.48382 0.48422 0.48461 0.48500 0.48537 0.48574
2.2 0.48610 0.48645 0.48679 0.48713 0.48745 0.48778 0.48809 0.48840 0.48870 0.48899
2.3 0.48928 0.48956 0.48983 0.49010 0.49036 0.49061 0.49086 0.49111 0.49134 0.49158
2.4 0.49180 0.49202 0.49224 0.49245 0.49266 0.49286 0.49305 0.49324 0.49343 0.49361
2.5 0.49379 0.49396 0.49413 0.49430 0.49446 0.49461 0.49477 0.49492 0.49506 0.49520
2.6 0.49534 0.49547 0.49560 0.49573 0.49585 0.49598 0.49609 0.49621 0.49632 0.49643
2.7 0.49653 0.49664 0.49674 0.49683 0.49693 0.49702 0.49711 0.49720 0.49728 0.49736
2.8 0.49744 0.49752 0.49760 0.49767 0.49774 0.49781 0.49788 0.49795 0.49801 0.49807
2.9 0.49813 0.49819 0.49825 0.49831 0.49836 0.49841 0.49846 0.49851 0.49856 0.49861
3.0 0.49865 0.49869 0.49874 0.49878 0.49882 0.49886 0.49889 0.49893 0.49896 0.49900
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tν,α

α

Quantiles for a Student’s t Distribution
ν tν,.20 tν,.15 tν,.10 tν,.05 tν,.025 tν,.01 tν,005

1 1.37638 1.96261 3.07768 6.31375 12.7062 31.82052 63.65674
2 1.06066 1.38621 1.88562 2.91999 4.30265 6.964560 9.92484
3 0.97847 1.24978 1.63775 2.35338 3.18245 4.54070 5.84091
4 0.94096 1.18957 1.53321 2.13185 2.77645 3.74695 4.60410
5 0.91954 1.15577 1.47588 2.01505 2.57058 3.36493 4.03216
6 0.90570 1.13416 1.43976 1.94318 2.44691 3.14267 3.70743
7 0.89603 1.11916 1.41492 1.89458 2.36462 2.99795 3.49948
8 0.88889 1.10815 1.39682 1.85955 2.30600 2.89646 3.35539
9 0.88340 1.09972 1.38303 1.83311 2.26216 2.82144 3.24984

10 0.87906 1.09306 1.37218 1.81246 2.22814 2.76377 3.16927
11 0.87553 1.08767 1.36343 1.79588 2.20099 2.71808 3.10581
12 0.87261 1.08321 1.35622 1.78229 2.17881 2.68100 3.05454
13 0.87015 1.07947 1.35017 1.77093 2.16037 2.65031 3.01228
14 0.86805 1.07628 1.34503 1.76131 2.14479 2.62449 2.97684
15 0.86624 1.07353 1.34061 1.75305 2.13145 2.60248 2.94671
16 0.86467 1.07114 1.33676 1.74588 2.11991 2.58349 2.92078
17 0.86328 1.06903 1.33338 1.73961 2.10982 2.56693 2.89823
18 0.86205 1.06717 1.33039 1.73406 2.10092 2.55238 2.87844
19 0.86095 1.06551 1.32773 1.72913 2.09302 2.53948 2.86093
20 0.85996 1.06402 1.32534 1.72472 2.08596 2.52798 2.84534
21 0.85907 1.06267 1.32319 1.72074 2.07961 2.51765 2.83136
22 0.85827 1.06145 1.32124 1.71714 2.07387 2.50832 2.81876
23 0.85753 1.06034 1.31946 1.71387 2.06866 2.49987 2.80734
24 0.85686 1.05932 1.31784 1.71088 2.06390 2.49216 2.79694
25 0.85624 1.05838 1.31635 1.70814 2.05954 2.48511 2.78744
26 0.85567 1.05752 1.31497 1.70562 2.05553 2.47863 2.77871
27 0.85514 1.05673 1.31370 1.70329 2.05183 2.47266 2.77068
28 0.85465 1.05599 1.31253 1.70113 2.04841 2.46714 2.76326
29 0.85419 1.05530 1.31143 1.69913 2.04523 2.46202 2.75639
30 0.85377 1.05466 1.31042 1.69726 2.04227 2.45726 2.75000
40 0.85070 1.05005 1.30308 1.68385 2.02108 2.42326 2.70446
50 0.84887 1.04729 1.29871 1.67591 2.00856 2.40327 2.67779
75 0.84644 1.04365 1.29294 1.66543 1.99210 2.37710 2.64298

100 0.84523 1.04184 1.29007 1.66023 1.98397 2.36422 2.62589
150 0.84402 1.04003 1.28722 1.65508 1.97591 2.35146 2.60900
∞ 0.84162 1.03643 1.28155 1.64485 1.95996 2.32635 2.57583
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Fν1,ν2;α

α

Quantiles for an F1,ν2 Distribution
ν2 F1,ν2;.20 F1,ν2;.15 F1,ν2;.10 F1,ν2;.05 F1,ν2;.025 F1,ν2;.01 F1,ν2;005

1 9.47214 17.34972 39.86346 161.44764 647.78901 4052.1807 16210.72272
2 3.55556 5.20721 8.52632 18.51282 38.50633 98.50251 198.50125
3 2.68221 3.70301 5.53832 10.12796 17.44344 34.11622 55.55196
4 2.35072 3.16197 4.54477 7.70865 12.21786 21.19769 31.33277
5 2.17823 2.88783 4.06042 6.60789 10.00698 16.25818 22.78478
6 2.07290 2.72307 3.77595 5.98738 8.81310 13.74502 18.63500
7 2.00201 2.61337 3.58943 5.59145 8.07267 12.24638 16.23556
8 1.95109 2.53517 3.45792 5.31766 7.57088 11.25862 14.68820
9 1.91277 2.47664 3.36030 5.11736 7.20928 10.56143 13.61361

10 1.88289 2.43122 3.28502 4.96460 6.93673 10.04429 12.82647
11 1.85894 2.39494 3.22520 4.84434 6.72413 9.64603 12.22631
12 1.83933 2.36531 3.17655 4.74723 6.55377 9.33021 11.75423
13 1.82296 2.34065 3.13621 4.66719 6.41425 9.07381 11.37354
14 1.80911 2.31982 3.10221 4.60011 6.29794 8.86159 11.06025
15 1.79722 2.30198 3.07319 4.54308 6.19950 8.68312 10.79805
16 1.78692 2.28654 3.04811 4.49400 6.11513 8.53097 10.57546
17 1.77790 2.27304 3.02623 4.45132 6.04201 8.39974 10.38418
18 1.76994 2.26114 3.00698 4.41387 5.97805 8.28542 10.21809
19 1.76286 2.25057 2.98990 4.38075 5.92163 8.18495 10.07253
20 1.75653 2.24112 2.97465 4.35124 5.87149 8.09596 9.94393
21 1.75083 2.23262 2.96096 4.32479 5.82665 8.01660 9.82952
22 1.74567 2.22493 2.94858 4.30095 5.78630 7.94539 9.72706
23 1.74098 2.21795 2.93736 4.27934 5.74980 7.88113 9.63480
24 1.73669 2.21157 2.92712 4.25968 5.71664 7.82287 9.55127
25 1.73276 2.20573 2.91774 4.24170 5.68637 7.76980 9.47531
26 1.72915 2.20036 2.90913 4.22520 5.65862 7.72125 9.40593
27 1.72582 2.19541 2.90119 4.21001 5.63311 7.67668 9.34232
28 1.72273 2.19082 2.89385 4.19597 5.60956 7.63562 9.28377
29 1.71986 2.18657 2.88703 4.18296 5.58777 7.59766 9.22973
30 1.71719 2.18261 2.88069 4.17088 5.56753 7.56248 9.17968
40 1.69801 2.15420 2.83535 4.08475 5.42394 7.31410 8.82786
50 1.68666 2.13743 2.80866 4.03431 5.34032 7.17058 8.62576
60 1.67915 2.12635 2.79107 4.00119 5.28561 7.07711 8.49462
70 1.67382 2.11849 2.77860 3.97778 5.24703 7.01140 8.40266
80 1.66984 2.11263 2.76931 3.96035 5.21835 6.96269 8.33461
90 1.66676 2.10808 2.76211 3.94688 5.19621 6.92514 8.28222

100 1.66429 2.10446 2.75638 3.93614 5.17859 6.89530 8.24064
150 1.65694 2.09364 2.73927 3.90420 5.12626 6.80689 8.11767
200 1.65328 2.08826 2.73078 3.88837 5.10038 6.76330 8.05716
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