STAT112: Mock-Midterm Examination

1. On an examination in psychology, 12 students in one class had a sample mean grade of 78 with a sample standard deviation of 6 , while 15 students in another class had a sample mean grade of 74 with a sample standard deviation of 8 . Using a level of significance of .05 , determine whether the first group is superior to the second group.
2. What is the difference between these two estimators: $\widehat{E\left[y_{i}\right]}$ and \hat{y}_{i} where y_{i} is the response variable of a linear model?
3. Given the samples, $\mathcal{S}_{1}=\left\{\begin{array}{ll}62133\}\end{array}\right)$ and $\mathcal{S}_{2}=\{53242\}$, test the hypothesis: $H_{0}: \mu_{1}=\mu_{2}$ vs $H_{1}: \mu_{1} \neq \mu_{2}$ at the .05 level of significance.
4. Using the same two samples of problem 3, find the 95% CI of $\mu_{2}-\mu_{1}$.
5. Let t_{0} represent a particular value of Student's t distribution. Find the value of t_{0} which will make the following statement true: $P\left(t \leq-t_{0}\right.$ or $\left.t \geq t_{0}\right)=.10$ with $\mathrm{df}=12$.
6. A random sample of 36 drinks from a soft-drink machine has an average content of 8 ounces with a standard deviation of .48 ounces. The vendor claims that the machine gives 7.5 ounces per cup. Are the customers being given too much? That is, test the hypothesis: $H_{0}: \mu=7.5$ ounces vs $H_{1}: \mu>7.5$ ounces at the .05 level of significance.
7. Given the following data of the rate by which laborers per 100 quit their jobs and of their hourly wage, a linear fixed effects model was proposed where the response variable is the rate of attrition and the explanatory variable is the average wage.

Rate of Attrition	1.4	.7	2.6	3.4	1.7	1.7	1.0	.5
Average Wage	$\$ 8.2$	10.35	6.18	5.37	9.94	9.11	10.59	13.29
Age	36	45	25	20	44	40	46	55
Rate of Attrition	2.3	1.9	1.4	1.8	2.0	2.0	3.8	
Average Wage	$\$.5$	6.43	8.83	10.93	8.80	7.99	5.549	
Age	35	21	33	27	39	47	39	

(a) Write the two parameter fixed effects linear model where the response variable is rate of attrition and the explanatory variable is average wage:
(b) Compute $\hat{\beta_{0}}=$
(c) Compute $\hat{\beta}_{1}=$
(d) When the wage is $\$ 7.50$ per hour, what is the estimate of the expected rate of attrition?
(e) Find the 95% confidence interval for that predicted sample average, $E\left[\widehat{E\left[y_{i}\right]}\right]$.

Table 1: Analysis of Variance for Fitting Regression

Source of Variation	df	Sum of Squares	Mean Sum of Squares	F statistic
Mean				
Regression				
Residual Error				
Total				

(f) Test the hypothesis, $H_{0}: \beta_{1}=0$ vs $H_{1}: \beta_{1} \neq 0$ at a level of significance, $\alpha=.05$.
$F_{r-1, n-r, \alpha}=$
(g) Give $\mathrm{s}=$
(h) Compute the 95% confidence interval for β_{1}.
(i) An age* wage interaction term is added to the model. Write this model:
(j) The resulting abbreviated ANOVA is given in Table 2

Table 2: Analysis of Variance for Fitting Regression

Source of Variation	df	Sum of Squares	Mean Sum of Squares	p-value
wage	1	8.2507	39.8792	$3.86 \mathrm{e}-05$
age*wage	1	0.5906	2.8547	0.1169
Residual Error	12	2.4827		

i. Is the interaction term significant at a level of significance of .05? Explain.
ii. The estimate of the interaction coefficient is: 0.016743 . (The estimate of β_{0} is: 10.317015 and the estimated wage coefficient is: -1.640321 .) Interpret what this estimate of the interaction coefficient means to someone who never took statistics.
8. One die is tossed 180 times with the following results:

Face	1	2	3	4	5	6
Count	28	36	36	30	27	23

Is the die fair? Use a .01 level of significance.
9. An association of homeowners of a residential sub-division requested from the local jurisdiction painted crosswalks to be placed across a busy street where there are a school bus and municipal bus stops arguing that the crosswalks will improve the safety of their children and pedestrians. The state traffic engineer argued against the proposal saying that out of $54,750,000$ vehicles passing by that spot in the past ten years, only two accidents occurred and none with pedestrians. Therefore, based on accident statistics spending $\$ 200$ for painted crosswalks is not justified. Is the statistical argument convincing? Explain.

