Probability Outline for STAT112

Charles Fleming

January 10, 2018

Theorem 1. If E_{1} and E_{2} are subsets of Ω and if they are disjoint, then $P\left(E_{1} \cup E_{2}\right)=$ $P\left(E_{1}\right)+P\left(E_{2}\right)$.

Sometimes, when working with sets, our attention is focused on only one of them while the rest are put together into the complement.

Definition 1. The complement of E, denoted by E^{c}, is the set of all elements of Ω which are not elements of E.

Corollary 1. $E \cup E^{c}=\Omega$.
Theorem 2. $P\left(E^{c}\right)=1-P(E)$.
Theorem 3. If G_{1} and G_{2} are subsets of Ω, then $P\left(G_{1} \cup G_{2}\right)=P\left(G_{1}\right)+P\left(G_{2}\right)-$ $P\left(G_{1} \cap G_{2}\right)$.

1 Axioms of Probability

Axiom 1. $0 \leqslant P(E) \leqslant 1$.
Axiom 2. $P(\Omega)=1$.
Axiom 3. If $E_{1}, E_{2}, \cdots, E_{n}$ are pairwise disjoint subsets of Ω, then $P\left(E_{1} \cup E_{2} \cup \cdots \cup\right.$ $\left.E_{n}\right)=P\left(E_{1}\right)+P\left(E_{2}\right)+\cdots+P\left(E_{n}\right)$.

Definition 2. A function, P, that satisfies Axioms 1-3 is called a probability.
Definition 3. Denote the conditional probability by $P(A \mid B)$ which means: the probability of the event, A, given that the event, B, has occurred. Also $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$.

Definition 4. If $P(A \mid B)=P(A)$, then the events A and B are said to be independent.

Theorem 4. Suppose that events A and B are independent, then $P(A \cap B)=P(A) P(B)$.
Theorem 5. Let A and E be events, then $P(A)=P(A \mid E) P(E)+P\left(A \mid E^{c}\right) P\left(E^{c}\right)$.
Definition 5. A function, X, which maps an outcome of the sample space to a number on the real line is called a random variable.

Definition 6. The expected value of a random variable, X, is defined to be:

$$
E[X]=\sum_{\substack{\text { all possible } \\ \text { values of } X}} k P(X=k) .
$$

(The summation \sum is taken over all possible values of X)
Definition 7. The variance of a random variable, X, is defined to be:

$$
\operatorname{var}(X)=\sum_{\substack{\text { all possible } \\ \text { values of } X}}(k-E[X])^{2} P(X=k) .
$$

(The summation is taken over all possible values of X)
Definition 8. The set of values $\{P(X=0), P(X=1), \ldots, P(X=n)\}$ is called the probability distribution or the probability mass function of the random variable X.

Observations 1. 1. $P(X=i) \geqslant 0$.
2. $\sum_{\substack{\text { all possible } \\ \text { values of } X}} P(X=k)=1$.
3. $P(X \leqslant k)=P(X=0)+P(X=1)+\ldots+P(X=k-1)+P(X=k)$.
4. $P(X>k)=1-P(X \leqslant k)$.
5. $P(X=k)=P(X \leqslant k)-P(X \leqslant k-1)$.

Only two outcomes characterize the Bernoulli distribution.
The Uniform distribution is characterized by the fact that for all values of the random variable, X, the probabilities are the same.

Bernoulli $\mathrm{b}(1, \mathrm{p})$
$E[X]=p$
$\operatorname{var}(X)=p q$

Discrete Uniform (a,b)
$E[X]=\frac{a+b}{2}$
$\operatorname{var}(X)=\frac{(b-a)(b-a+2)}{12}$

Binomial $\mathrm{b}(\mathrm{n}, \mathrm{p})$
$E[X]=n p$
$\operatorname{var}(X)=n p q$

The Binomial distribution is characterized by n independent trials for which each trial has two outcomes with a probability of success, p. If $X \sim b(n, p)$, then

$$
\begin{equation*}
P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k} \quad \text { for } \quad k=0,1,2, \ldots, n \tag{1}
\end{equation*}
$$

Definition 9. The symbol $\binom{n}{k}$ is the number of possible subsets of size k that can be drawn from a set of n objects.

Theorem 6.

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!} \text { where } n!=n(n-1)(n-2) \ldots(3)(2)(1)
$$

The best way to describe the continuous Uniform distribution is with a picture of its probability density function as shown here.

The equation of the probability density function (pdf) of the Normal distribution, $N\left(\mu, \sigma^{2}\right)$, is: $f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$.

Contiuous Uniform $\mathrm{U}(\mathrm{a}, \mathrm{b})$
$E[X]=\frac{a+b}{2}$
$\operatorname{var}(X)=\frac{(b-a)^{2}}{12}$

Normal $\mathrm{N}\left(\mu, \sigma^{2}\right)$
$E[X]=\mu$
$\operatorname{var}(X)=\sigma^{2}$

An important property of the Normal distribution is: If $X \sim N\left(\mu, \sigma^{2}\right)$, then $a X+b \sim$ $N\left(a \mu+b, a^{2} \sigma^{2}\right)$ for the two arbitrary constants, a and b . In particular, let $a=\frac{1}{\sigma}$ and $b=-\frac{\mu}{\sigma}$, then $a X+b=\frac{X-\mu}{\sigma}$; moreover, $a \mu+b=0$, and $a^{2} \sigma^{2}=1$, hence $\frac{X-\mu}{\sigma} \sim N(0,1)$.

Definition 10. $\frac{X-\mu}{\sigma}$ is called the population z-score of $X . \frac{\bar{X}-\mu}{\frac{\sigma}{\sqrt{n}}}$ is the population z-score of \bar{X}.
Definition 11. $\frac{x_{i}-\bar{x}}{s}$ is called the sample z-score of x_{i}.
Note: $\frac{\bar{x}-\mu}{\frac{s}{\sqrt{n}}} \sim T_{n-1}$ where T_{n-1} is Student's T distribution with n-1 degrees of freedom and $E\left[X_{i}\right]=\mu \quad \forall i$.

Definition 12. i.i.d. means independent identically distribution.

lemma 1. If $X_{1}, X_{2}, \ldots, X_{n}$ are i.i.d., then $E\left[X_{1}\right]=E\left[X_{2}\right]=\ldots=E\left[X_{n}\right]$ and $\operatorname{var}\left(X_{1}\right)=\operatorname{var}\left(X_{2}\right)=\ldots=\operatorname{var}\left(X_{n}\right)$.
Theorem 7. If X and Y are random variables, then $E[X+Y]=E[X]+E[Y]$.
Theorem 8. If a and b are constants, then $E[a X+b]=a E[X]+b$ and $\operatorname{var}(a X+b)=a^{2} \operatorname{var}(X)$.
Theorem 9. If X and Y are independent random variables, then $\operatorname{var}(X+Y)=v a r(X)+v a r(Y)$.
Theorem 10. If $X_{1}, X_{2}, \ldots, X_{n}$ are i.i.d. each with mean μ and variance σ^{2}, and $\bar{x}=\frac{X_{1}+\cdots+X_{n}}{n}$, then

$$
E[\bar{x}]=\mu \text { and } \operatorname{var}(\bar{x})=\frac{\sigma^{2}}{n}
$$

Note: for a finite population $\widehat{\operatorname{var}(\bar{x}})=\left(\frac{N-n}{N}\right) \frac{s^{2}}{n}$. See Theory of Survey Sampling for STAT112

Definition 13. If $\hat{\Theta}$ is an estimator of Θ, then $\hat{\Theta}$ is called an unbiased estimator of Θ, if $E[\hat{\Theta}]=\Theta$.

If X_{i} are i.i.d. $N\left(\mu, \sigma^{2}\right)$ and $\bar{x}=\frac{X_{1}+X_{2}+\cdots+X_{n}}{n}$, then $E[\bar{x}]=\mu$; hence \bar{x} is called an unbiased estimator of μ. Also, $E\left[s^{2}\right]=\sigma^{2}$; hence s^{2} is called an unbiased estimator of σ^{2} where $s^{2}=\frac{\sum_{i \in \mathcal{S}}\left(X_{i}-\bar{X}\right)^{2}}{n-1}$.
Theorem 11. (Central Limit Theorem) If $X_{1}, X_{2}, \ldots, X_{n}$ are i.i.d. and $\bar{x}=\frac{X_{1}+\cdots+X_{n}}{n}$ then

$$
\frac{\bar{x}-E[\bar{x}]}{\sqrt{\operatorname{var}(\bar{x})}}=\text { sample } z \text {-score } \quad \rightarrow \quad N(0,1) \quad \text { as } n \rightarrow \infty
$$

Theorem 12. Given random variables, X and Y, then:

$$
\begin{aligned}
E[Y] & =E[E[Y \mid X]] \\
\operatorname{var}(Y) & =\operatorname{var}(E[Y \mid X])+E[\operatorname{var}(Y \mid X)]
\end{aligned}
$$

