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1 Example of a Sampling Distribution

Define x̄ “

ř
iPS

xi

n
and s2 “

ř
iPS

pxi´x̄q2

n´1
. For each sample, x̄ maps outcomes of the sample

space to a number and s2 maps outcomes of the sample space to a number according to
a drawing of the sample. Both x̄ and s2 are, therefore, random variables. The schematic
diagram shown in Figure 1 illustrates the mapping of x̄ and s2 from the set of outcomes
which comprise the sample space Ω but to different numbers.
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Figure 1:

Not only are x̄ and s2 random variables, but any mapping of a sample space to a
number is a random variable like the sample median or the sample 1st quartile or the
sample range. Associated with a random variable is a probability distribution. There is
one for x̄ and a different one for s2. The probability distribution which is associated with
a sampling random variable is called a sampling distribution simply, in order to emphasize
its association with a sample.
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To illustrate the concept of a sampling distribution, consider the sample space of out-
comes in which an outcome consists of a pair of numbers. Any place in the pair can be
filled with either a 0, 2, 4, 6. As such, the sample space of all possible outcomes is shown
in Figure 2.
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Figure 2:

Define x̄ “ a`b

2
where a and b are the places in any pair (a,b). x̄ maps an outcome to

the average of its two members. Define s2 “ pa´x̄q2`pb´x̄q2

1
“ pb´aq2

2
, and the median as the

median of a and b. Each random variable has a set of possible values. For x̄, the possible
values are: t0, 1, 2, 3, 4, 5, 6u; for s2, the possible values are: t0, 2, 8, 18u; for the
median, the possible values are: t0, 1, 2, 3, 4, 5, 6u. Co-incidentally, the distribution
of x̄ and of the median are the same in this example but not necessarily the same in
general. Associated with each of these three random variables is a probability distribution;
they are shown in Figure 3. None of the distributions is a common distribution which we
know by a name, nevertheless, the diagram tells us everything we need to know about the
distributions of x̄, s2, and the median. From the diagram, for instance, it is can be seen
that P px̄ “ 4q “ 4

16
. Similarly, P pmedian “ 3q “ 4

16
and P ps2 “ 8q “ 4

16
. It is clear that

the sample mean, sample variance, and the sample median are random variables though
they each have a different probability distribution.

Consider the random variable, x̄. It has an expected value and a variance, that is:

Erx̄s “ 0p
1

16
q ` 1p

2

16
q ` ¨ ¨ ¨ ` 5p

2

16
q ` 6p

1

16
q “ 3

and

varpx̄q “ p0 ´ 3q2
1

16
` ¨ ¨ ¨ ` p6 ´ 3q2p

1

16
q “

5

2

We know by Theorem 1 1 which is discussed in the Probability lecture notes that Erx̄s “
Erxis “ µ. In this problem, xi “ t0, 2, 4, 6u and that the probabilities of selecting the

1

2



.

(0,0)

(6,6)

. x=
2

a+b

*

*
*
* * ** *

* *

*
*

*
*
*
*

*

*
*
* * ** *

* *

*
*

*
*
*
*

*
*
*

*

*
**

*
*

**
*

*
*
*
*

(a−x) + (b−x) 
2 2

1
2
=

 (b−a)
2

2
=

.

.

.

.

.
(a,b)

_

1/16
5

2/164/162/16

0 1 6432

1/163/163/16

1/16
5

2/164/162/16

0 1 6432

1/163/163/16

0 1882

2/164/166/16

s

Ω

median(a,b)

4/16

Figure 3:

elements of the sample space are equally likely; therefore, Erxis “ p0`2`4`6q1

4
“ 3 “ µ.

The short way of determining Erx̄s is to invoke Theorem 1 which tells us that Erx̄s “ 3.
Likewise, by Theorem 1, since the xi’s are i.i.d., varpx̄q “ σ2

n
where σ2 “ varpxiq and

where n is the number of random variables which constitute x̄. By direct computation,

varpxiq “
1

4
p0 ´ 3q2 `

1

4
p2 ´ 3q2 `

1

4
p4 ´ 3q2 `

1

4
p6 ´ 3q2 “ 5

Theorem 1. If X1, X2, . . . , Xn are i.i.d. each with mean µ and variance σ2, and x̄ “ X1`¨¨¨`Xn

n
,

then

Erx̄s “ µ and varpx̄q “
σ2

n

Note: for a finite population {varpsqx “
`
N´n

N

˘
s
2

n
. See Theory of Survey Sampling for STAT112
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varpx̄q “ 5

2
. We note that Theorem 1 does not apply to the median nor to s2. For those

cases, we need to resort to the definitions of median and variance as tedious as that might
be.

The results of our computations are compiled in Table 1.

x̄ median s2

Erx̄s “ 3 Ermedians “ 3 Ers2s “ 15

4

medianpx̄q “ 3 medianpmedianq “ 3 medianps2q “ 2
varpx̄q “ 5

2
varpmedianq “ 5

2
varps2q “ 553

16

2 Empirical Sampling Distribution

In this section, a probability distribution will be compared to an empirical probability dis-
tribution which is obtained from a process of drawing pairs of numbers from: t0, 2, 4, 6u
such that each drawing is equally likely. According to the theory of simulations, the re-
sulting histogram should bear a resemblance to the theoretical probability distribution.

Simulations are performed when it is impossible or highly impractical to derive a theo-
retical probability distribution, because the mathematical problem is too complex to solve.
The method of obtaining an empirical probability distribution by a process of simulations
is called a Monte Carlo simulation technique. It was invented in the 1930’s by physicists
to evaluate complex molecular interactions and atomic physics which defied the derivation
of exact mathematical solutions. Statisticians have used these Monte Carlo techniques to
evaluate complex statistical problems.

As was mentioned in the Probability lecture notes, probability begins with a sampling
space; it is abstract in that it only exits in man’s imagination. Whereas statistics begins
with a population of real objects which can be touched and examined. As such, even
though there is no direct connection between the world of probability and the world of
statistics, we can use the tools which are developed in the science of probability to make
inferences about the population from a set of data which is obtained from the study of a
real phenomenon. The validity of those inferences are expressed in part by of confidence
intervals and equivalently by testing hypotheses.

The present example of creating an empirical probability distribution by means of a
Monte Carlo simulation will illustrate that as the number of drawings increase the his-
togram will appear to converge to the probability density function. How close the histogram
is to the probability density function will be measured by the goodness-of-fit test statistic.
If the discrepancy between the histogram and the probability distribution is too large,
then we reject the hypothesis that the histogram adequately fits the probability density
function, otherwise if the discrepancy is small, a good appears to exit between the two.
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The following simple computer program written in R will produce a histogram, X2 test
statistic, the X2 quantile at α “ .05, and the p-value for the goodness-of-fit test in the
case of creating an empirical sampling distribution like the actual one shown in Figure 3.

x<-c(0,2,4,6)

dist<-c()

for(i in 1:100){

y<-sample(x,size=2,replace=TRUE) ## size=2 -> drawing a pair.

dist<-rbind(dist,c(y,mean(y),median(y),var(y)))

}

breaks<-0:7

r<-hist(dist[,3]+.0001,breaks=breaks, freq=T,

main="Histogram of the Sample Mean", xlab="Value of xbar")

counts<-r$counts

prob<-c(1/16,2/16,3/16,4/16,3/16,2/16,1/16)

obs<-counts

exp<-sum(counts)*prob

chi2<-sum((obs-exp)^2/exp)
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n<-length(prob)

print(c("Chi-square Test Statistic=",chi2))

print(c("Chi-square Quantile=",qchisq(.95,n-1)))

print(c("p-value=",1-pchisq(chi2,n-1)))

A different histogram and set of statistics is produced every time this program is
executed. One such histogram appears in Figure 4 and a picture of the probability density
function is shown in Figures 4 and 5.

By visual inspection, the histogram bears a resemblance to the probability density
function. To provide an analytical way to measure the goodness-of-fit between the two, we
will calculate the X2 test statistic as follows:

X2 “
nÿ

i“1

pobservedi ´ expectediq
2

expectedi
(1)

where the observed values of x̄ came from the computer simulation of the sampling dis-
tribution. The results of one execution of the program is shown in Table 1 . The ob-
served frequencies for every value of x̄ which were obtained from this particular execution
of the program are: t5, 14, 21, 22, 21, 9, 8u. The expected number of such occur-
rences is 100 ˆ prob where prob “ t 1

16
, 2

16
, 3

16
, 4

16
, 3

16
, 2

16
, 1

16
u, that is expected “

t6.25, 12.50, 18.75, 25.00, 18.75, 12.50, 6.25u. A tabulation of these calculations is given
in Table 1.

Table 1

Value of x̄ 0 1 2 3 4 5 6

Observed 5 14 21 22 21 9 8

Expected 100p 1

16
q 100p 2

16
q 100p 3

16
q 100p 4

16
q 100p 3

36
q 100p 2

16
q 100p 1

16
q

Deviation ´20p 1

16
q 24p 1

16
q 36p 1

16
q ´48p 1

16
q 36p 1

16
q ´56p 1

16
q 28p 1

16
q

Squared Deviation 25

16

36

16

81

16

144

16

81

16

196

16

49

16

X2 Terms 1

4

9

50

27

100

9

25

27

100

49

50

49

100

Therefore, after using equation (1) whose terms appear in the fifth row of Table 1,
X2 “ 14

5
“ 2.8; the X2

5,.05 quantile is: 12.59159. Because X2 “ 2.8 ą 12.59159 “ X2

5,.05, we
cannot reject the null hypothesis that the probability density function adequately explains
the histogram. The p-value happens to be .8335. It appears that the simulated distribution
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makes an adequate fit and that the simulation whereby 100 sample means were generated
by drawing pairs of elements at random agrees with the theoretical probability distribution.

Similarly, the same exercise may be performed for finding an empirical distributions
of the median and for the variance. The simulation of the distribution of the median is
shown in Figure 6 and its theoretical probability distribution is shown beside it in Figure
7. The goodness-of-fit test statistic is X2 “ 2.8 with a p-value of .8335. The simulation
of the distribution of the variance is shown in Figure 8 and its theoretical probability
distribution is shown in Figure 9. The goodness-of-fit test statistic is X2 “ 2.306 with a
p-value of .5112. Note that n=4 because there are only four terms in computing X2.
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3 Modeling a Survey Sample

When creating the example which was described in Section 1, a random variable was
defined on a sample space by mapping the name of an outcome to its corresponding
numerical value as depicted in Figure 10. The random variable, Xi follows a discrete
Uniform distribution with a probability of P pXi “ kq “ 1

4
@k. This sample space and

random variable could describe the four possible scores of a quiz which student, i, can
receive. The Uniform distribution suggests that the student merely guessed at the four
possible answers as if the quiz consisted of three multiple choice problems where each
problem is worth two points.

Suppose that there are two students in the class who both guess at the questions.
According to the discussion of Section 1, the sample space of quiz scores for the class is
shown in Figure 2 and the probability distribution of the class mean is shown in Figure 3
where x̄ “ x1`x2

2
.

Rather than guessing, suppose the two students answered the questions after having
carefully studied the subject of the quiz and having had attended the lectures. Assuming
that the two students are of equal caliber such that their probability distributions of getting
the correct answers are the same. In other words, the xi’s are i.i.d. Let us assume that the
probability distribution is the one shown in Table 2 and shown in Figure 11.

Table 2

0 2 4 6

1

10

1

6

2

5

1

3

Whereas, in the case of xi following a Uniform distribution as shown in Figure 10, the
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probability distribution of x1`x2

2
which is shown in Figures 2 and 5 was easy to deduce, but

it is a challenge to deduce the probability distribution of x1`x2

2
when xi’s follow another

probability distribution. The mathematical technique which is used to find the probability
distribution of x1`x2

2
is called the method of convolutions. To find the probability distri-

bution of x1`x2

2
, we note that because P px̄ “ kq “ P px1`x2

2
“ kq “ P px1 ` x2 “ 2k), it is

sufficient to find the convolution of x1 ` x2. The process of finding the convolution begins
by defining the probability generating function, ppsq “ p0s

0 ` p1s
1 ` p2s

2 ` . . .` pns
n. For

xi, the probability generating function is, ppsq “ p0`p1s
1`p2s

2`p3s
3 “ 1

10
` 1

6
s` 2

5
s2` 1

3
s3.

According to the theory of convolutions, the probability generation function for x1 ` x2

is ppsq2, because xi’s are i.i.d. Continuing in this way, the probability generation func-
tion for x1 ` x2 ` x3 will be ppsq3. Or in general, the probability generation function for
x1 ` x2 ` x3 ` . . . ` xn is ppsqn when the xi’s are i.i.d.

The coefficients of the probability generating function correspond to the probabilities.
For example,

ppsq2 “ p
1

10
`

1

6
s `

2

5
s2 `

1

3
s3q2

“
1

100
`

1

10
s1 `

97

900
s2 `

1

5
s3 `

61

225
s4 `

4

15
s5 `

1

9
s6

Therefore, the probability distribution of x1 ` x2 is:

Table 3

Value of x̄ 0 1 2 3 4 5 6

Probability 1

100

1

10

97

900

1

5

61

225

4

15

1

9

and it is shown in Figure 12.
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For a class of two students, the number of elements in the sample space is 42 “ 16.
For three students, the size of the sampling space will be 43; for a class of 55 students,
the size of Ω will be 455. The corresponding probability distribution of x̄ “ x1`...`x55

55
will

have 4 ˆ 55 “ 210 terms and its corresponding probability generating function will be
ppxq55. With so many terms, the practicality of finding the expected value of x̄ and of
s2 from the definitions is formidable. Fortunately, Theorem 1 provides easy answers. By
means of Theorem 1, Erx̄s “ Erxis and varpx̄q “ σ2

n
. By referring to Table 3, Erxis “

0p 1

100
q ` . . . ` 6p1

9
q “ 59

15
and σ2 “ varpxiq “ p0 ´ 59

15
q2 1

100
` . . . p6 ´ 59

15
q2 1

9
“ 809

450
, so that

varpx̄q “
809

450

55
“ 809

24750
“ .03268.

Unfortunately, there is no equivalent Theorem 1 for finding the class median nor the
class variance, s2. Instead, we resort to a Monte Carlo technique like the one which we used
in Section 2. A computer program for finding the mean of x̄ using a simulation technique
of drawing a sample of 55 elements 100 times is given below:

x<-c(0,2,4,6)

dist<-c()

p0<-c(1/10,1/6,2/5,1/3)

for(i in 1:100){
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y<-sample(x,size=55,replace=TRUE,prob=p0)

dist<-rbind(dist,c(y,mean(y),median(y),var(y)))

}

breaks<-0:7

r<-hist(dist[,3]+.0001,breaks=breaks, freq=T, main="Histogram of the Sample Mean", xlab="Value

counts<-r$counts

p<-counts/(sum(counts))

The empirical probability density function of x̄ is shown in Figure 13. Superimposed
on the histogram is a plot of a Normal distribution. We see that the Normal distribution
fits the histogram quite well in accordance with the Central Limit Theorem.
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Figure 13:

By mean of the same Monte Carlo technique, the probability density functions of the
median and of the sample variance for a class of 55 students are shown in Figure 14 and
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15. Superimposed on the graph of the graph of the sample variance, there appears a plot
of a X2 distribution.
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The discussion on finding the class mean and its variance presupposes an infinite pop-
ulation of students from which the class of 55 students was drawn. Suppose that there
are four sections of students at a certain college with a total size of 203 students, then
the population of students is finite. Consequently, the estimate of the variance of the
sample mean must be modified by the finite population correction factor, N´n

N
, so that

{varpsqx “ p203´55

203
qvarpx̄q “ p148

203
q 809

14025
“ .04205. For a discussion of the finite population

correction factor see the lecture notes, Theory of Survey Sampling for STAT112.
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